Modeling Concurrent and Probabilistic Systems

Lecture 4: Definition of Strong Bisimulation

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

@ Repetition: Equivalence of CCS Processes

m ing i ter Semester :

Repetition: Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

@ identifies processes whose L'T'Ss coincide,

@ implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

@ is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

@ is deadlock sensitive, i.e., if P 2 @ and if P has a w-deadlock,
then @ has a w-deadlock (and vice versa, by equivalence).

Formally: we are looking for a deadlock-sensitive congruence relation
=~ C Prc x Prc such that

LTS(P) = LTS(Q) = P=Q = Tr(P) = Tr(Q)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: Trace Equivalence

Definition (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P’ € Prc such that P N P’}

be the trace language of P.
P,Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example (One-place buffer)

B(in, out) = in.out.B(in, out)

— T(B) = (in - out)* - (in + ¢)

lmH Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4

Repetition: CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
=—> modular system development

Definition (CCS congruence)

An equivalence relation = C Prc x Pre is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P = @ then

aP =2 aQ
P+R = Q+R
R+P = R+Q
PR = Q|R
R|P = R|Q
newa P = newa(@

for every a € Act, R € Prc, and a € N.

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Deadlocks

Definition (Deadlock)

Let P,@Q € Prc and w € Act* such that P o, Q and Q /—.
Then @ is called a w-deadlock of P.

@ Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q := a.b.nil.

@ Such properties are important since it can be crucial that a certain
communication is eventually possible.

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6

© Definition of Strong Bisimulation

m i Concurrent and Probabilisti Winter Semeste

Definition of Strong Bisimulation I

Observation: equivalence should be deadlock sensitive
= needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P, @Q € Prc are equivalent iff, for every a € Act, every a-successor of P
is equivalent to some a-successor of (), and vice versa.

In the first version we will ignore the special function of the silent
action 7 (= weak bisimulation)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Definition of Strong Bisimulation II

Definition 4.1 (Strong bisimulation)

A relation p C Prc x Pre is called a strong bisimulation if Pp@ implies,
for every a € Act,

Q@ P P — ex. Q € Presuch that Q —— @' and P'pQ’
Q@ Q 5 @ = ex. P' € Presuch that P - P’ and P'pQ’

P,Q € Prc are called strongly bisimilar (notation: P ~ Q) if there
exists a strong bisimulation p such that PpQ.

v

~ 18 an equivalence relation.
on the board []

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

Example 4.3

(on the board)
()
P
O alla
a Q2
(2]
P 2% Q
la a/ "\, a
P Q1 Q3
b\, ¢ bl lc
Py Pj Q2 Qq
(remember: Tr(P) = Tr(Q))

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Examples 11

Example 4.4

Binary semaphore
(controls exclusive access to two instances of a resource)
Sequential definition:

Semo(get,put) = get.Semq(get, put)
Sem;y(get,put) = get.Sems(get, put) + put.Semg(get, put)
Sema(get,put) = put.Semq(get, put)

Parallel definition:

S(get,put) = So(get, put) || So(get, put)
So(get,put) = get.Si(get, put)
Si(get,put) = put.So(get, put)

Proposition: Semg(get, put) ~ S(get, put) (see 3rd ex. sheet)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Examples 111

Example 4.5

Two-place buffer
Sequential definition:

By(in, out) = in.Bi(in, out)
Bi(in,out) = out.By(in, out) + in.Bs(in, out)
By (in, out) = out.By(in, out)

Parallel definition:

By (in, out) = new com (B(in,com) || B(com, out))

B(in,out) = in.out.B(in, out)

Proposition: By(in, out) % By (in, out) (see 3rd ex. sheet)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

	Repetition: Equivalence of CCS Processes
	Definition of Strong Bisimulation

