
Modeling Concurrent and Probabilistic Systems
Lecture 4: Definition of Strong Bisimulation

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Outline

1 Repetition: Equivalence of CCS Processes

2 Definition of Strong Bisimulation

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2

Repetition: Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

1 identifies processes whose LTSs coincide,
2 implies trace equivalence, i.e., considers two processes equivalent

only if both can execute the same actions sequences (formal
definition later), and

3 is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

4 is deadlock sensitive, i.e., if P ∼= Q and if P has a w-deadlock,
then Q has a w-deadlock (and vice versa, by equivalence).

Formally: we are looking for a deadlock-sensitive congruence relation
∼= ⊆ Prc × Prc such that

LTS (P) = LTS (Q) =⇒ P ∼= Q =⇒ Tr(P) = Tr(Q)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: Trace Equivalence

Definition (Trace language)

For every P ∈ Prc, let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P w−→
∗
P ′}

be the trace language of P .

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example (One-place buffer)

B(in, out) = in.out .B(in, out)

=⇒ Tr(B) = (in · out)∗ · (in + ε)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4

Repetition: CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
=⇒ modular system development

Definition (CCS congruence)

An equivalence relation ∼= ⊆ Prc × Prc is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P ∼= Q then

α.P ∼= α.Q

P +R ∼= Q+R

R+ P ∼= R+Q

P ‖ R ∼= Q ‖ R
R ‖ P ∼= R ‖ Q

new aP ∼= new aQ

for every α ∈ Act , R ∈ Prc, and a ∈ N .

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5

Repetition: Deadlocks

Definition (Deadlock)

Let P,Q ∈ Prc and w ∈ Act∗ such that P w−→
∗
Q and Q 6−→.

Then Q is called a w-deadlock of P .

Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q := a.b.nil.
Such properties are important since it can be crucial that a certain
communication is eventually possible.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6

Outline

1 Repetition: Equivalence of CCS Processes

2 Definition of Strong Bisimulation

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Definition of Strong Bisimulation I

Observation: equivalence should be deadlock sensitive
=⇒ needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P,Q ∈ Prc are equivalent iff, for every α ∈ Act , every α-successor of P
is equivalent to some α-successor of Q, and vice versa.

In the first version we will ignore the special function of the silent
action τ (=⇒ weak bisimulation)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Definition of Strong Bisimulation II

Definition 4.1 (Strong bisimulation)

A relation ρ ⊆ Prc ×Prc is called a strong bisimulation if PρQ implies,
for every α ∈ Act ,

1 P
α−→ P ′ =⇒ ex. Q′ ∈ Prc such that Q α−→ Q′ and P ′ρQ′

2 Q
α−→ Q′ =⇒ ex. P ′ ∈ Prc such that P α−→ P ′ and P ′ρQ′

P,Q ∈ Prc are called strongly bisimilar (notation: P ∼ Q) if there
exists a strong bisimulation ρ such that PρQ.

Theorem 4.2

∼ is an equivalence relation.

Proof.

on the board

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

Examples I

Example 4.3

(on the board)
1

P
	
a

Q1

a ↓↑ a
Q2

2

P
↓ a
P1

b↙↘ c
P2 P3

6∼ Q
a↙↘ a
Q1 Q3

b ↓ ↓ c
Q2 Q4

(remember: Tr(P) = Tr(Q))

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Examples II

Example 4.4

Binary semaphore
(controls exclusive access to two instances of a resource)
Sequential definition:

Sem0(get , put) = get .Sem1(get , put)
Sem1(get , put) = get .Sem2(get , put) + put .Sem0(get , put)
Sem2(get , put) = put .Sem1(get , put)

Parallel definition:

S(get , put) = S0(get , put) ‖ S0(get , put)
S0(get , put) = get .S1(get , put)
S1(get , put) = put .S0(get , put)

Proposition: Sem0(get , put) ∼ S(get , put) (see 3rd ex. sheet)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Examples III

Example 4.5

Two-place buffer
Sequential definition:

B0(in, out) = in.B1(in, out)
B1(in, out) = out .B0(in, out) + in.B2(in, out)
B2(in, out) = out .B1(in, out)

Parallel definition:

B‖(in, out) = new com (B(in, com) ‖ B(com, out))
B(in, out) = in.out .B(in, out)

Proposition: B0(in, out) 6∼ B‖(in, out) (see 3rd ex. sheet)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

	Repetition: Equivalence of CCS Processes
	Definition of Strong Bisimulation

