
Modeling Concurrent and Probabilistic Systems
Lecture 6: Decidability of Strong Bisimulation

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/


Outline

1 Repetition: Definition of Strong Bisimulation

2 Traces and Deadlocks

3 Decidability of Strong Bisimulation

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2



Repetition: Definition of Strong Bisimulation

Definition (Strong bisimulation)

A relation ρ ⊆ Prc ×Prc is called a strong bisimulation if PρQ implies,
for every α ∈ Act ,

1 P
α−→ P ′ =⇒ ex. Q′ ∈ Prc such that Q α−→ Q′ and P ′ρQ′

2 Q
α−→ Q′ =⇒ ex. P ′ ∈ Prc such that P α−→ P ′ and P ′ρQ′

P,Q ∈ Prc are called strongly bisimilar (notation: P ∼ Q) if there
exists a strong bisimulation ρ such that PρQ.

Theorem
1 ∼ is an equivalence relation
2 LTS (P ) = LTS (Q) =⇒ P ∼ Q
3 P ∼ Q =⇒ Tr(P ) = Tr(Q)
4 ∼ is a CCS congruence
5 ∼ is deadlock sensitive
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Traces and Deadlocks

Remark: traces and deadlocks are independent in the following sense

Example 6.1

P Q P Q
a↙↘ a ↓ a a↙↘ b a↙↘ c
b ↓ ↓ b 	 b 	 c

same traces different traces
different deadlocks same deadlocks

But: if all traces are finite, then processes with identical deadlocks are
trace equivalent (since every trace is a prefix of some deadlock)
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The Problem

We now show that the word problem for strong bisimulation

Problem

Given: P,Q ∈ Prc
Question: P ∼ Q?

is decidable for finite-state processes (i.e., for those with
|S (P )|, |S (Q)| <∞ where S (P ) := {P ′ ∈ Prc | P −→∗ P ′})
(in general it is undecidable – see 4th ex. sheet).

To this aim we give an algorithm which iteratively partitions the state
set of an LTS such that the single blocks correspond to the
∼-equivalence classes.
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The Partitioning Algorithm I

Theorem 6.2 (Partitioning algorithm for ∼)

Input: LTS (S ,Act ,−→) (S finite)
Procedure: 1 Start with initial partition Π := {S}

2 Let B ∈ Π be a block and α ∈ Act an action
3 For every P ∈ B, let

α(P ) := {C ∈ Π | ex. P ′ ∈ C with P α−→ P ′}
be the set of P ’s α-successor blocks

4 Partition B =
⋃k
i=1Bi such that

P,Q ∈ Bi ⇐⇒ α(P ) = α(Q) for every α ∈ Act
5 Let Π := (Π \ {B}) ∪ {B1, . . . , Bk}
6 Continue with (2) until Π is stable

Output: Partition Π̂ of S

Then, for every P,Q ∈ S,
P ∼ Q ⇐⇒ ex. B ∈ Π̂ with P,Q ∈ B
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The Partitioning Algorithm II

Remark: if states from two disjoint LTSs (S1,Act1,−→1) and
(S2,Act2,−→2) (where S1 ∩ S2 = ∅) are to be compared, their union
(S1 ∪ S2,Act1 ∪Act2,−→1 ∪ −→2) is chosen as input (here usually
Act1 = Act2)

Example 6.3

Binary semaphore (on the board)

Proof.

(Theorem 6.2; on the board)
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