

Modeling Concurrent and Probabilistic Systems

Lecture 6: Decidability of Strong Bisimulation

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/mcps07/>

Winter Semester 2007/08

- 1 Repetition: Definition of Strong Bisimulation
- 2 Traces and Deadlocks
- 3 Decidability of Strong Bisimulation

Definition (Strong bisimulation)

A relation $\rho \subseteq Prc \times Prc$ is called a **strong bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,

- ① $P \xrightarrow{\alpha} P' \implies \text{ex. } Q' \in Prc \text{ such that } Q \xrightarrow{\alpha} Q' \text{ and } P' \rho Q'$
- ② $Q \xrightarrow{\alpha} Q' \implies \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{\alpha} P' \text{ and } P' \rho Q'$

$P, Q \in Prc$ are called **strongly bisimilar** (notation: $P \sim Q$) if there exists a strong bisimulation ρ such that $P\rho Q$.

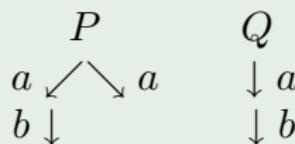
Theorem

- ① \sim is an equivalence relation
- ② $LTS(P) = LTS(Q) \implies P \sim Q$
- ③ $P \sim Q \implies Tr(P) = Tr(Q)$
- ④ \sim is a CCS congruence
- ⑤ \sim is deadlock sensitive

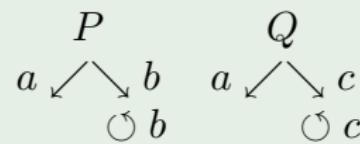
- ① Repetition: Definition of Strong Bisimulation
- ② Traces and Deadlocks
- ③ Decidability of Strong Bisimulation

Remark: traces and deadlocks are independent in the following sense

Example 6.1



same traces
different deadlocks



different traces
same deadlocks

But: if all traces are finite, then processes with identical deadlocks are trace equivalent (since every trace is a prefix of some deadlock)

- 1 Repetition: Definition of Strong Bisimulation
- 2 Traces and Deadlocks
- 3 Decidability of Strong Bisimulation

We now show that the word problem for strong bisimulation

Problem

Given: $P, Q \in Prc$

Question: $P \sim Q$?

is **decidable for finite-state processes** (i.e., for those with $|S(P)|, |S(Q)| < \infty$ where $S(P) := \{P' \in Prc \mid P \xrightarrow{*} P'\}$)
(in general it is undecidable – see 4th ex. sheet).

To this aim we give an algorithm which iteratively partitions the state set of an LTS such that the single blocks correspond to the \sim -equivalence classes.

The Partitioning Algorithm I

Theorem 6.2 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \longrightarrow) (S \text{ finite})$

Procedure: ① *Start with initial partition $\Pi := \{S\}$*

② *Let $B \in \Pi$ be a block and $\alpha \in Act$ an action*

③ *For every $P \in B$, let*

$$\alpha(P) := \{C \in \Pi \mid \text{ex. } P' \in C \text{ with } P \xrightarrow{\alpha} P'\}$$

be the set of P 's α -successor blocks

④ *Partition $B = \bigcup_{i=1}^k B_i$ such that*

$$P, Q \in B_i \iff \alpha(P) = \alpha(Q) \text{ for every } \alpha \in Act$$

⑤ *Let $\Pi := (\Pi \setminus \{B\}) \cup \{B_1, \dots, B_k\}$*

⑥ *Continue with (2) until Π is stable*

Output: Partition $\hat{\Pi}$ of S

Then, for every $P, Q \in S$,

$$P \sim Q \iff \text{ex. } B \in \hat{\Pi} \text{ with } P, Q \in B$$

Remark: if states from two disjoint LTSs $(S_1, Act_1, \rightarrow_1)$ and $(S_2, Act_2, \rightarrow_2)$ (where $S_1 \cap S_2 = \emptyset$) are to be compared, their union $(S_1 \cup S_2, Act_1 \cup Act_2, \rightarrow_1 \cup \rightarrow_2)$ is chosen as input (here usually $Act_1 = Act_2$)

Example 6.3

Binary semaphore (on the board)

Proof.

(Theorem 6.2; on the board)

