

Modeling Concurrent and Probabilistic Systems

Lecture 7: Strong Simulation and Weak Bisimulation

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/mcps07/>

Winter Semester 2007/08

- 1 Strong Simulation
- 2 Definition of Weak Bisimulation
- 3 Properties of Weak Bisimulation

Strong Simulation

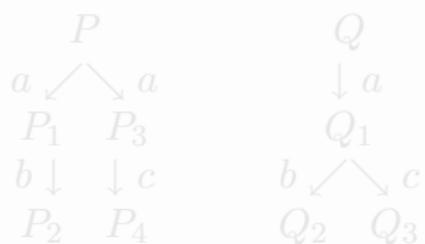
Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features)

Definition 7.1 (Strong simulation)

A relation $\rho \subseteq \text{Pre} \times \text{Pre}$ is called a **strong simulation** if, whenever $P \rho Q$ and $P \xrightarrow{\alpha} P'$, there exists $Q' \in \text{Pre}$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \rho Q'$. We say that Q **strongly simulates** P if there exists a strong simulation ρ such that $P \rho Q$.

Thus: if Q strongly simulates P , then whatever transition path P takes, Q can match it by a path which retains all of P 's options.

Example 7.2



Q strongly simulates P ,
but not vice versa

Strong Simulation

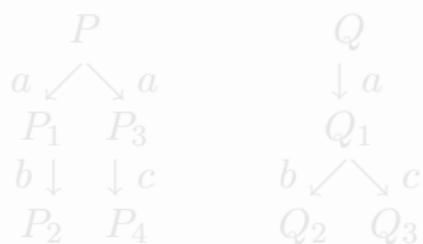
Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features)

Definition 7.1 (Strong simulation)

A relation $\rho \subseteq Prc \times Prc$ is called a **strong simulation** if, whenever $P\rho Q$ and $P \xrightarrow{\alpha} P'$, there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \rho Q'$. We say that Q **strongly simulates** P if there exists a strong simulation ρ such that $P\rho Q$.

Thus: if Q strongly simulates P , then whatever transition path P takes, Q can match it by a path which retains all of P 's options.

Example 7.2



Q strongly simulates P ,
but not vice versa

Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features)

Definition 7.1 (Strong simulation)

A relation $\rho \subseteq Prc \times Prc$ is called a **strong simulation** if, whenever $P\rho Q$ and $P \xrightarrow{\alpha} P'$, there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \rho Q'$. We say that Q **strongly simulates** P if there exists a strong simulation ρ such that $P\rho Q$.

Thus: if Q strongly simulates P , then whatever transition path P takes, Q can match it by a path which retains all of P 's options.

Example 7.2



Q strongly simulates P ,
but not vice versa

Strong Simulation

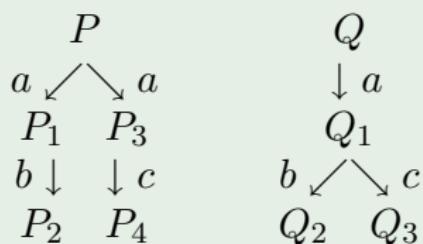
Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features)

Definition 7.1 (Strong simulation)

A relation $\rho \subseteq Prc \times Prc$ is called a **strong simulation** if, whenever $P\rho Q$ and $P \xrightarrow{\alpha} P'$, there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \rho Q'$. We say that Q **strongly simulates** P if there exists a strong simulation ρ such that $P\rho Q$.

Thus: if Q strongly simulates P , then whatever transition path P takes, Q can match it by a path which retains all of P 's options.

Example 7.2



Q strongly simulates P ,
but not vice versa

Strong Simulation and Bisimulation

Corollary 7.3

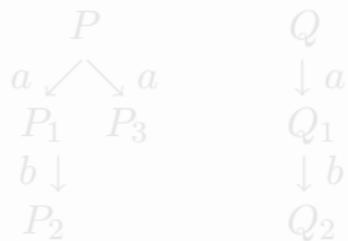
If $P \sim Q$, then Q strongly simulates P , and P strongly simulates Q .

Proof.

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions. \square

Caveat: the converse does generally not hold!

Example 7.4



Q simulates P and vice versa,
but $P \not\sim Q$

Strong Simulation and Bisimulation

Corollary 7.3

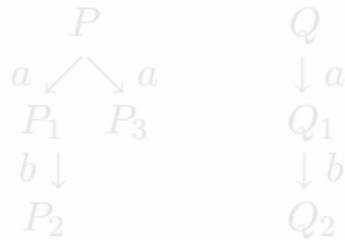
If $P \sim Q$, then Q strongly simulates P , and P strongly simulates Q .

Proof.

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions. □

Caveat: the converse does generally not hold!

Example 7.4



Q simulates P and vice versa,
but $P \not\sim Q$

Strong Simulation and Bisimulation

Corollary 7.3

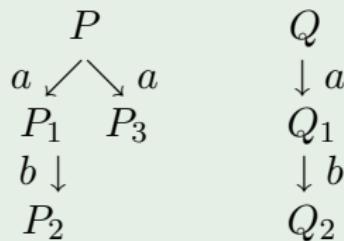
If $P \sim Q$, then Q strongly simulates P , and P strongly simulates Q .

Proof.

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions. □

Caveat: the converse does generally not hold!

Example 7.4



Q simulates P and vice versa,
but $P \not\sim Q$

- ① Strong Simulation
- ② Definition of Weak Bisimulation
- ③ Properties of Weak Bisimulation

Inadequacy of Strong Bisimulation

Example 7.5

Sequential and parallel two-place buffer:

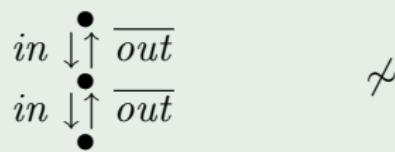
$$B_0(in, out) = in.B_1(in, out)$$

$$B_1(in, out) = \overline{out}.B_0(in, out) + in.B_2(in, out)$$

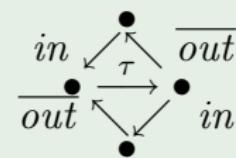
$$B_2(in, out) = \overline{out}.B_1(in, out)$$

$$B_{\parallel}(in, out) = \mathbf{new} \ com \ (B(in, com) \parallel B(com, out))$$

$$B(in, out) = in.\overline{out}.B(in, out)$$



↗



Idea: abstract from silent actions

Definition 7.6

- Given $w \in Act^*$, $\hat{w} \in (N \cup \overline{N})^*$ denotes the sequence of non- τ -actions in w (in particular, $\hat{\tau}^n = \varepsilon$ for every $n \in \mathbb{N}$).
- For $w = \alpha_1 \dots \alpha_n \in Act^*$ and $P, Q \in Prc$, we let

$$P \xrightarrow{w} Q \iff P \xrightarrow{\tau}^* \xrightarrow{\alpha_1} \xrightarrow{\tau}^* \dots \xrightarrow{\tau}^* \xrightarrow{\alpha_n} \xrightarrow{\tau}^* Q$$

(and hence: $\xrightarrow{\varepsilon} = \xrightarrow{\tau}^*$).

- A relation $\rho \subseteq Prc \times Prc$ is called a **weak bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,
 - $P \xrightarrow{\alpha} P' \implies$ ex. $Q' \in Prc$ such that $Q \xrightarrow{\hat{\alpha}} Q'$ and $P' \rho Q'$
 - $Q \xrightarrow{\alpha} Q' \implies$ ex. $P' \in Prc$ such that $P \xrightarrow{\hat{\alpha}} P'$ and $P' \rho Q'$
- $P, Q \in Prc$ are called **weakly bisimilar** (notation: $P \approx Q$) if there exists a weak bisimulation ρ such that $P\rho Q$.

Definition of Weak Bisimulation I

Idea: abstract from silent actions

Definition 7.6

- Given $w \in Act^*$, $\hat{w} \in (N \cup \overline{N})^*$ denotes the sequence of non- τ -actions in w (in particular, $\hat{\tau}^n = \varepsilon$ for every $n \in \mathbb{N}$).
- For $w = \alpha_1 \dots \alpha_n \in Act^*$ and $P, Q \in Prc$, we let

$$P \xrightarrow{\hat{w}} Q \iff P \xrightarrow{\tau}^* \xrightarrow{\alpha_1} \xrightarrow{\tau}^* \dots \xrightarrow{\tau}^* \xrightarrow{\alpha_n} \xrightarrow{\tau}^* Q$$

(and hence: $\xrightarrow{\varepsilon} = \xrightarrow{\tau}^*$).

- A relation $\rho \subseteq Prc \times Prc$ is called a **weak bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,
 - $P \xrightarrow{\alpha} P' \implies$ ex. $Q' \in Prc$ such that $Q \xrightarrow{\hat{\alpha}} Q'$ and $P' \rho Q'$
 - $Q \xrightarrow{\alpha} Q' \implies$ ex. $P' \in Prc$ such that $P \xrightarrow{\hat{\alpha}} P'$ and $P' \rho Q'$
- $P, Q \in Prc$ are called **weakly bisimilar** (notation: $P \approx Q$) if there exists a weak bisimulation ρ such that $P\rho Q$.

Definition of Weak Bisimulation I

Idea: abstract from silent actions

Definition 7.6

- Given $w \in Act^*$, $\hat{w} \in (N \cup \overline{N})^*$ denotes the sequence of non- τ -actions in w (in particular, $\hat{\tau}^n = \varepsilon$ for every $n \in \mathbb{N}$).
- For $w = \alpha_1 \dots \alpha_n \in Act^*$ and $P, Q \in Prc$, we let

$$P \xrightarrow{\hat{w}} Q \iff P \xrightarrow{\tau}^* \xrightarrow{\alpha_1} \xrightarrow{\tau}^* \dots \xrightarrow{\tau}^* \xrightarrow{\alpha_n} \xrightarrow{\tau}^* Q$$

(and hence: $\xrightarrow{\varepsilon} = \xrightarrow{\tau}^*$).

- A relation $\rho \subseteq Prc \times Prc$ is called a **weak bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,
 - $P \xrightarrow{\alpha} P' \implies$ ex. $Q' \in Prc$ such that $Q \xrightarrow{\hat{\alpha}} Q'$ and $P' \rho Q'$
 - $Q \xrightarrow{\alpha} Q' \implies$ ex. $P' \in Prc$ such that $P \xrightarrow{\hat{\alpha}} P'$ and $P' \rho Q'$
- $P, Q \in Prc$ are called **weakly bisimilar** (notation: $P \approx Q$) if there exists a weak bisimulation ρ such that $P\rho Q$.

Definition of Weak Bisimulation I

Idea: abstract from silent actions

Definition 7.6

- Given $w \in Act^*$, $\hat{w} \in (N \cup \overline{N})^*$ denotes the sequence of non- τ -actions in w (in particular, $\hat{\tau}^n = \varepsilon$ for every $n \in \mathbb{N}$).
- For $w = \alpha_1 \dots \alpha_n \in Act^*$ and $P, Q \in Prc$, we let

$$P \xrightarrow{\hat{w}} Q \iff P \xrightarrow{\tau}^* \xrightarrow{\alpha_1} \xrightarrow{\tau}^* \dots \xrightarrow{\tau}^* \xrightarrow{\alpha_n} \xrightarrow{\tau}^* Q$$

(and hence: $\xrightarrow{\varepsilon} = \xrightarrow{\tau}^*$).

- A relation $\rho \subseteq Prc \times Prc$ is called a **weak bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,
 - $P \xrightarrow{\alpha} P' \implies$ ex. $Q' \in Prc$ such that $Q \xrightarrow{\hat{\alpha}} Q'$ and $P' \rho Q'$
 - $Q \xrightarrow{\alpha} Q' \implies$ ex. $P' \in Prc$ such that $P \xrightarrow{\hat{\alpha}} P'$ and $P' \rho Q'$
- $P, Q \in Prc$ are called **weakly bisimilar** (notation: $P \approx Q$) if there exists a weak bisimulation ρ such that $P\rho Q$.

Remark: each of the two clauses in the definition of weak bisimulation subsumes two cases:

- $P \xrightarrow{\alpha} P'$ where $\alpha \neq \tau$
 \Rightarrow ex. $Q' \in Prc$ such that $Q (\xrightarrow{\tau})^* \xrightarrow{\alpha} (\xrightarrow{\tau})^* Q'$ and $P' \rho Q'$
- $P \xrightarrow{\tau} P'$
 \Rightarrow ex. $Q' \in Prc$ such that $Q (\xrightarrow{\tau})^* Q'$ and $P' \rho Q'$
(where $Q' = Q$ is admissible)

Example 7.7
on the board

Remark: each of the two clauses in the definition of weak bisimulation subsumes two cases:

- $P \xrightarrow{\alpha} P'$ where $\alpha \neq \tau$
 \Rightarrow ex. $Q' \in Prc$ such that $Q (\xrightarrow{\tau})^* \xrightarrow{\alpha} (\xrightarrow{\tau})^* Q'$ and $P' \rho Q'$
- $P \xrightarrow{\tau} P'$
 \Rightarrow ex. $Q' \in Prc$ such that $Q (\xrightarrow{\tau})^* Q'$ and $P' \rho Q'$
(where $Q' = Q$ is admissible)

Example 7.7

on the board

- ① Strong Simulation
- ② Definition of Weak Bisimulation
- ③ Properties of Weak Bisimulation

Theorem 7.8

\approx is an equivalence relation.

Proof.

in analogy to the corresponding proof for \sim (Theorem 4.2)

In particular, the following characterization is still valid:

$$\approx = \bigcup \{\rho \mid \rho \text{ weak bisimulation}\},$$

i.e., \approx is again itself a weak bisimulation. □

Theorem 7.8

\approx is an equivalence relation.

Proof.

in analogy to the corresponding proof for \sim (Theorem 4.2)

In particular, the following characterization is still valid:

$$\approx = \bigcup \{\rho \mid \rho \text{ weak bisimulation}\},$$

i.e., \approx is again itself a weak bisimulation. □

Moreover Definition 7.6 implies that every strong bisimulation is also a weak one (since, for every $\alpha \in Act$, $\xrightarrow{\alpha} \subseteq \hat{\xrightarrow{\alpha}}$). This yields the desired connection to **LTS equivalence**: for every $P, Q \in Prc$,

$$LTS(P) = LTS(Q) \implies P \sim Q \implies P \approx Q.$$

Furthermore **trace equivalence** is implied if the definition is adapted:

$$P \approx Q \implies \hat{Tr}(P) = \hat{Tr}(Q)$$

where $\hat{Tr}(P) := \{\hat{w} \mid w \in Tr(P)\} \subseteq (N \cup \overline{N})^*$.

Moreover Definition 7.6 implies that every strong bisimulation is also a weak one (since, for every $\alpha \in Act$, $\xrightarrow{\alpha} \subseteq \hat{\xrightarrow{\alpha}}$). This yields the desired connection to **LTS equivalence**: for every $P, Q \in Prc$,

$$LTS(P) = LTS(Q) \implies P \sim Q \implies P \approx Q.$$

Furthermore **trace equivalence** is implied if the definition is adapted:

$$P \approx Q \implies \hat{Tr}(P) = \hat{Tr}(Q)$$

where $\hat{Tr}(P) := \{\hat{w} \mid w \in Tr(P)\} \subseteq (N \cup \overline{N})^*$.

Properties of Weak Bisimulation III

Another important property is

Lemma 7.9

For every $P \in Prc$,

$$P \approx \tau.P$$

Proof.

We show that

$$\rho := \{(P, \tau.P)\} \cup id_{Prc}$$

is a weak bisimulation:

- ① let $P \xrightarrow{\alpha} P'$
 $\implies \tau.P \xrightarrow{\tau} P \xrightarrow{\alpha} P'$
 $\implies \tau.P \xrightarrow{\hat{\alpha}} P'$ with $P' \rho P'$ (since $id_{Prc} \subseteq \rho$)
- ② the only transition of $\tau.P$ is $\tau.P \xrightarrow{\tau} P$;
it is simulated by $P \xrightarrow{\varepsilon} P$ with $P \rho P$

Properties of Weak Bisimulation III

Another important property is

Lemma 7.9

For every $P \in Prc$,

$$P \approx \tau.P$$

Proof.

We show that

$$\rho := \{(P, \tau.P)\} \cup id_{Prc}$$

is a weak bisimulation:

- ① let $P \xrightarrow{\alpha} P'$
 $\implies \tau.P \xrightarrow{\tau} P \xrightarrow{\alpha} P'$
 $\implies \tau.P \xrightarrow{\hat{\alpha}} P'$ with $P' \rho P'$ (since $id_{Prc} \subseteq \rho$)
- ② the only transition of $\tau.P$ is $\tau.P \xrightarrow{\tau} P$;
it is simulated by $P \xrightarrow{\varepsilon} P$ with $P \rho P$

Properties of Weak Bisimulation III

Another important property is

Lemma 7.9

For every $P \in Prc$,

$$P \approx \tau.P$$

Proof.

We show that

$$\rho := \{(P, \tau.P)\} \cup id_{Prc}$$

is a weak bisimulation:

- ① let $P \xrightarrow{\alpha} P'$
 $\implies \tau.P \xrightarrow{\tau} P \xrightarrow{\alpha} P'$
 $\implies \tau.P \xrightarrow{\hat{\alpha}} P'$ with $P' \rho P'$ (since $id_{Prc} \subseteq \rho$)
- ② the only transition of $\tau.P$ is $\tau.P \xrightarrow{\tau} P$;
it is simulated by $P \xrightarrow{\varepsilon} P$ with $P \rho P$

Properties of Weak Bisimulation III

Another important property is

Lemma 7.9

For every $P \in Prc$,

$$P \approx \tau.P$$

Proof.

We show that

$$\rho := \{(P, \tau.P)\} \cup id_{Prc}$$

is a weak bisimulation:

- ① let $P \xrightarrow{\alpha} P'$
 $\implies \tau.P \xrightarrow{\tau} P \xrightarrow{\alpha} P'$
 $\implies \tau.P \xrightarrow{\hat{\alpha}} P'$ with $P' \rho P'$ (since $id_{Prc} \subseteq \rho$)
- ② the only transition of $\tau.P$ is $\tau.P \xrightarrow{\tau} P$;
it is simulated by $P \xrightarrow{\varepsilon} P$ with $P \rho P$

Using Lemma 7.9, however, we can show that \approx is **not a congruence**:

It is true that $b.\text{nil} \approx \tau.b.\text{nil}$ (Theorem 7.8, Lemma 7.9)
but $a.\text{nil} + b.\text{nil} \not\approx a.\text{nil} + \tau.b.\text{nil}$ (Example 7.7(b))

The other operators are uncritical, i.e., weak bisimilarity is preserved under prefixing, parallel composition, and restriction.

Using Lemma 7.9, however, we can show that \approx is **not a congruence**:

It is true that $b.\text{nil} \approx \tau.b.\text{nil}$ (Theorem 7.8, Lemma 7.9)
but $a.\text{nil} + b.\text{nil} \not\approx a.\text{nil} + \tau.b.\text{nil}$ (Example 7.7(b))

The other operators are uncritical, i.e., weak bisimilarity is preserved under prefixing, parallel composition, and restriction.

Using Lemma 7.9, however, we can show that \approx is **not a congruence**:

It is true that $b.\text{nil} \approx \tau.b.\text{nil}$ (Theorem 7.8, Lemma 7.9)
but $a.\text{nil} + b.\text{nil} \not\approx a.\text{nil} + \tau.b.\text{nil}$ (Example 7.7(b))

The other operators are uncritical, i.e., weak bisimilarity is preserved under prefixing, parallel composition, and restriction.

Using Lemma 7.9, however, we can show that \approx is **not a congruence**:

It is true that $b.\text{nil} \approx \tau.b.\text{nil}$ (Theorem 7.8, Lemma 7.9)
but $a.\text{nil} + b.\text{nil} \not\approx a.\text{nil} + \tau.b.\text{nil}$ (Example 7.7(b))

The other operators are uncritical, i.e., weak bisimilarity is preserved under prefixing, parallel composition, and restriction.

Also **deadlock sensitivity** is guaranteed if τ -actions are appropriately handled:

Theorem 7.10

Let $P, Q \in \text{Prc}$ such that $P \approx Q$. Then, for every $w \in (N \cup \bar{N})^*$,

$$P \xrightarrow{w} \not\rightarrow \iff Q \xrightarrow{w} \not\rightarrow.$$

Proof.

analogously to Theorem 5.4 (induction on $|w|$)

Also **deadlock sensitivity** is guaranteed if τ -actions are appropriately handled:

Theorem 7.10

Let $P, Q \in Prc$ such that $P \approx Q$. Then, for every $w \in (N \cup \bar{N})^*$,

$$P \xrightarrow{w} \not\rightarrow \iff Q \xrightarrow{w} \not\rightarrow .$$

Proof.

analogously to Theorem 5.4 (induction on $|w|$)

Also **deadlock sensitivity** is guaranteed if τ -actions are appropriately handled:

Theorem 7.10

Let $P, Q \in Prc$ such that $P \approx Q$. Then, for every $w \in (N \cup \bar{N})^*$,

$$P \xrightarrow{w} \not\rightarrow \iff Q \xrightarrow{w} \not\rightarrow .$$

Proof.

analogously to Theorem 5.4 (induction on $|w|$)

