

Modeling Concurrent and Probabilistic Systems

Lecture 8: Observation Congruence

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/mcps07/>

Winter Semester 2007/08

- 1 Repetition: Weak Bisimulation
- 2 Further Properties of Weak Bisimulation
- 3 Definition of Observation Congruence
- 4 Properties of Observation Congruence

Definition

- Given $w \in Act^*$, $\hat{w} \in (N \cup \overline{N})^*$ denotes the sequence of non- τ -actions in w (in particular, $\hat{\tau}^n = \varepsilon$ for every $n \in \mathbb{N}$).
- For $w = \alpha_1 \dots \alpha_n \in Act^*$ and $P, Q \in Prc$, we let

$$P \xrightarrow{w} Q \iff P \xrightarrow{\tau}^* \xrightarrow{\alpha_1} \xrightarrow{\tau}^* \dots \xrightarrow{\tau}^* \xrightarrow{\alpha_n} \xrightarrow{\tau}^* Q$$

(and hence: $\xrightarrow{\varepsilon} = \xrightarrow{\tau}^*$).

- A relation $\rho \subseteq Prc \times Prc$ is called a **weak bisimulation** if $P \rho Q$ implies, for every $\alpha \in Act$,
 - $P \xrightarrow{\alpha} P' \implies$ ex. $Q' \in Prc$ such that $Q \xrightarrow{\hat{\alpha}} Q'$ and $P' \rho Q'$
 - $Q \xrightarrow{\alpha} Q' \implies$ ex. $P' \in Prc$ such that $P \xrightarrow{\hat{\alpha}} P'$ and $P' \rho Q'$
- $P, Q \in Prc$ are called **weakly bisimilar** (notation: $P \approx Q$) if there exists a weak bisimulation ρ such that $P \rho Q$.

Properties

- ① $P \sim Q \implies P \approx Q$
- ② \approx is an equivalence relation
- ③ $LTS(P) = LTS(Q) \implies P \approx Q$
- ④ $P \approx Q \implies \hat{Tr}(P) = \hat{Tr}(Q)$
- ⑤ \approx is (non- τ) deadlock sensitive
- ⑥ For every $P \in Prc$, $P \approx \tau.P$
- ⑦ \approx is **not a congruence**:

It is true that $b.\text{nil} \approx \tau.b.\text{nil}$

but $a.\text{nil} + b.\text{nil} \not\approx a.\text{nil} + \tau.b.\text{nil}$

- 1 Repetition: Weak Bisimulation
- 2 Further Properties of Weak Bisimulation
- 3 Definition of Observation Congruence
- 4 Properties of Observation Congruence

Lemma 8.1

For every $P, Q, R \in \text{Prc}$,

- ① $P + Q \approx Q + P$
- ② $P + (Q + R) \approx (P + Q) + R$
- ③ $P + \text{nil} \approx P$
- ④ $P \parallel Q \approx Q \parallel P$
- ⑤ $P \parallel (Q \parallel R) \approx (P \parallel Q) \parallel R$
- ⑥ $P \parallel \text{nil} \approx P$

Proof.

similar to Lemma 5.2 (strong bisimulation; omitted)

Lemma 8.1

For every $P, Q, R \in \text{Prc}$,

- ① $P + Q \approx Q + P$
- ② $P + (Q + R) \approx (P + Q) + R$
- ③ $P + \text{nil} \approx P$
- ④ $P \parallel Q \approx Q \parallel P$
- ⑤ $P \parallel (Q \parallel R) \approx (P \parallel Q) \parallel R$
- ⑥ $P \parallel \text{nil} \approx P$

Proof.

similar to Lemma 5.2 (strong bisimulation; omitted)

- 1 Repetition: Weak Bisimulation
- 2 Further Properties of Weak Bisimulation
- 3 Definition of Observation Congruence
- 4 Properties of Observation Congruence

Goal: introduce an equivalence which has most of the desirable properties of \approx and which is preserved under all CCS operators

Definition 8.2

$P, Q \in Prc$ are called **observationally congruent** (notation: $P \simeq Q$) if, for every $\alpha \in Act$,

- ① $P \xrightarrow{\alpha} P' \implies$ ex. $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \approx Q'$
- ② $Q \xrightarrow{\alpha} Q' \implies$ ex. $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \approx Q'$

Remark: \simeq differs from \approx only in the use of $\xrightarrow{\alpha}$ rather than $\xrightarrow{\hat{\alpha}}$, i.e., it requires τ -actions from P or Q to be simulated by at least one τ -step in the other process. This only applies to the first step; the successors just have to satisfy $P' \approx Q'$ (and not $P' \simeq Q'$).

Goal: introduce an equivalence which has most of the desirable properties of \approx and which is preserved under all CCS operators

Definition 8.2

$P, Q \in Prc$ are called **observationally congruent** (notation: $P \simeq Q$) if, for every $\alpha \in Act$,

- ① $P \xrightarrow{\alpha} P' \implies$ ex. $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \approx Q'$
- ② $Q \xrightarrow{\alpha} Q' \implies$ ex. $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \approx Q'$

Remark: \simeq differs from \approx only in the use of $\xrightarrow{\alpha}$ rather than $\xrightarrow{\hat{\alpha}}$, i.e., it requires τ -actions from P or Q to be simulated by at least one τ -step in the other process. This only applies to the first step; the successors just have to satisfy $P' \approx Q'$ (and not $P' \simeq Q'$).

Goal: introduce an equivalence which has most of the desirable properties of \approx and which is preserved under all CCS operators

Definition 8.2

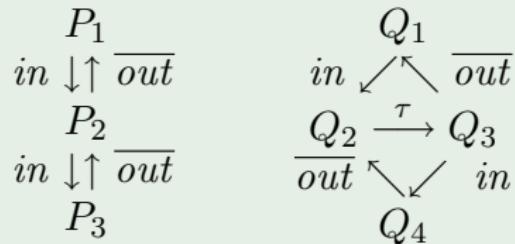
$P, Q \in Prc$ are called **observationally congruent** (notation: $P \simeq Q$) if, for every $\alpha \in Act$,

- ① $P \xrightarrow{\alpha} P' \implies$ ex. $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \approx Q'$
- ② $Q \xrightarrow{\alpha} Q' \implies$ ex. $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \approx Q'$

Remark: \simeq differs from \approx only in the use of $\xrightarrow{\alpha}$ rather than $\xrightarrow{\hat{\alpha}}$, i.e., it requires τ -actions from P or Q to be simulated by at least one τ -step in the other process. This only applies to the first step; the successors just have to satisfy $P' \approx Q'$ (and not $P' \simeq Q'$).

Example 8.3

① Sequential and parallel two-place buffer:



$P_1 \simeq Q_1$ since $P_1 \approx Q_1$ (cf. Example 7.7) and neither P_1 nor Q_1 has initial τ -steps

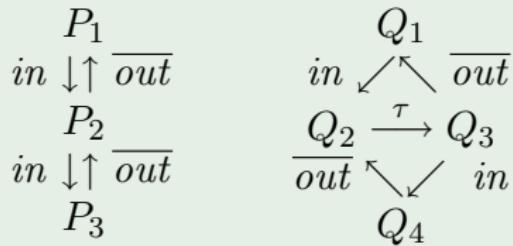
② $\tau.a.nil \not\simeq a.nil$
(since $\tau.a.nil \xrightarrow{\tau}$ but $a.nil \not\xrightarrow{\tau}$)

③ $a.\tau.nil \simeq a.nil$
(since $\tau.nil \approx nil$)

Definition of Observation Congruence II

Example 8.3

① Sequential and parallel two-place buffer:



$P_1 \simeq Q_1$ since $P_1 \approx Q_1$ (cf. Example 7.7) and neither P_1 nor Q_1 has initial τ -steps

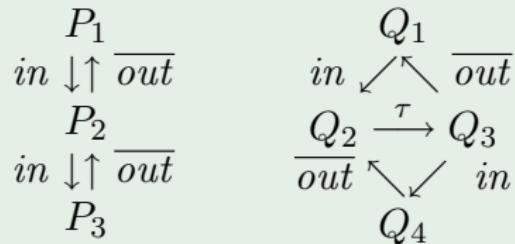
② $\tau.a.\text{nil} \not\simeq a.\text{nil}$
(since $\tau.a.\text{nil} \xrightarrow{\tau}$ but $a.\text{nil} \not\xrightarrow{\tau}$)

③ $a.\tau.\text{nil} \simeq a.\text{nil}$
(since $\tau.\text{nil} \approx \text{nil}$)

Definition of Observation Congruence II

Example 8.3

① Sequential and parallel two-place buffer:



$P_1 \simeq Q_1$ since $P_1 \approx Q_1$ (cf. Example 7.7) and neither P_1 nor Q_1 has initial τ -steps

② $\tau.a.\text{nil} \not\simeq a.\text{nil}$
(since $\tau.a.\text{nil} \xrightarrow{\tau}$ but $a.\text{nil} \not\xrightarrow{\tau}$)

③ $a.\tau.\text{nil} \simeq a.\text{nil}$
(since $\tau.\text{nil} \approx \text{nil}$)

- 1 Repetition: Weak Bisimulation
- 2 Further Properties of Weak Bisimulation
- 3 Definition of Observation Congruence
- 4 Properties of Observation Congruence

Corollary 8.4

For every $P, Q \in Prc$,

- ① $P \sim Q \implies P \simeq Q$
- ② $P \simeq Q \implies P \approx Q$

Proof.

① since $\xrightarrow{\alpha} \subseteq \xrightarrow{\alpha}$ and $\sim \subseteq \approx$

② since $\xrightarrow{\alpha} \subseteq \xrightarrow{\hat{\alpha}}$

Remark: this implies that

- processes with **identical LTSs** are \simeq -equivalent,
- \simeq -equivalent processes are (non- τ) **trace equivalent**, and
- \simeq is (non- τ) **deadlock sensitive**.

Corollary 8.4

For every $P, Q \in Prc$,

- ① $P \sim Q \implies P \simeq Q$
- ② $P \simeq Q \implies P \approx Q$

Proof.

- ① since $\xrightarrow{\alpha} \subseteq \xrightarrow{\alpha}$ and $\sim \subseteq \approx$
- ② since $\xrightarrow{\alpha} \subseteq \xrightarrow{\hat{\alpha}}$

□

Remark: this implies that

- processes with **identical LTSs** are \simeq -equivalent,
- \simeq -equivalent processes are (non- τ) **trace equivalent**, and
- \simeq is (non- τ) **deadlock sensitive**.

Corollary 8.4

For every $P, Q \in Prc$,

- ① $P \sim Q \implies P \simeq Q$
- ② $P \simeq Q \implies P \approx Q$

Proof.

- ① since $\xrightarrow{\alpha} \subseteq \xrightarrow{\alpha}$ and $\sim \subseteq \approx$
- ② since $\xrightarrow{\alpha} \subseteq \xrightarrow{\hat{\alpha}}$

Remark: this implies that

- processes with **identical LTSs** are \simeq -equivalent,
- \simeq -equivalent processes are (non- τ) **trace equivalent**, and
- \simeq is (non- τ) **deadlock sensitive**.

Theorem 8.5

For every $P, Q \in Prc$,

$$P \simeq Q \iff P + R \approx Q + R \text{ for every } R \in Prc.$$

Proof.

on the board

Remark: \simeq is therefore the largest congruence contained in \approx

Theorem 8.5

For every $P, Q \in Prc$,

$$P \simeq Q \iff P + R \approx Q + R \text{ for every } R \in Prc.$$

Proof.

on the board

Remark: \simeq is therefore the largest congruence contained in \approx

Theorem 8.5

For every $P, Q \in Prc$,

$$P \simeq Q \iff P + R \approx Q + R \text{ for every } R \in Prc.$$

Proof.

on the board

Remark: \simeq is therefore the **largest congruence** contained in \approx

Theorem 8.6

\simeq is an equivalence relation.

Proof.

on the board

Theorem 8.6

\simeq is an equivalence relation.

Proof.

on the board

Theorem 8.7

\simeq is a CCS congruence.

Proof.

omitted

Theorem 8.7

\simeq is a CCS congruence.

Proof.

omitted

Theorem 8.8

For every $P, Q \in Prc$,

$$P \approx Q \iff P \simeq Q \text{ or } P \simeq \tau.Q \text{ or } \tau.P \simeq Q.$$

Proof.

see Exercise 5.3

Theorem 8.8

For every $P, Q \in Prc$,

$$P \approx Q \iff P \simeq Q \text{ or } P \simeq \tau.Q \text{ or } \tau.P \simeq Q.$$

Proof.

see Exercise 5.3

