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Repetition: Definition of Obs. Congruence

Goal: introduce an equivalence which has most of the desirable
properties of ≈ and which is preserved under all CCS operators

Definition

P,Q ∈ Prc are called observationally congruent (notation: P ' Q) if,
for every α ∈ Act ,

1 P
α−→ P ′ =⇒ ex. Q′ ∈ Prc such that Q α=⇒ Q′ and P ′ ≈ Q′

2 Q
α−→ Q′ =⇒ ex. P ′ ∈ Prc such that P α=⇒ P ′ and P ′ ≈ Q′

Remark: ' differs from ≈ only in the use of α=⇒ rather than α̂=⇒, i.e.,
it requires τ -actions from P or Q to be simulated by at least one τ -step
in the other process. This only applies to the first step; the successors
just have to satisfy P ′ ≈ Q′ (and not P ′ ' Q′).
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Repetition: Properties of Obs. Congruence

Properties

1 LTS (P ) = LTS (Q)
=⇒ P ∼ Q
=⇒ P ' Q
=⇒ P ≈ Q
=⇒ T̂r(P ) = T̂r(Q)

2 ' is an equivalence relation
3 ' is (non-τ) deadlock sensitive
4 ' is a CCS congruence
5 For every P,Q ∈ Prc,

P ' Q ⇐⇒ P +R ≈ Q+R for every R ∈ Prc
6 For every P,Q ∈ Prc,

P ≈ Q ⇐⇒ P ' Q or P ' τ.Q or τ.P ' Q
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The Problem

We now show that the word problem for observation equivalence

Problem

Given: P,Q ∈ Prc
Question: P ' Q?

is decidable for finite–state processes (i.e., for those with
|S (P )|, |S (Q)| <∞ where S (P ) := {P ′ ∈ Prc | P −→∗ P ′})
(in general it is undecidable).

Since the definition of ' directly relies on ≈ (cf. Definitions 7.6 and
8.2), we first extend the partitioning algorithm from ∼ (Theorem 6.2)
to ≈.
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The Partitioning Algorithm I

Theorem 9.1 (Partitioning algorithm for ∼≈)

Input: LTS (S ,Act ,−→) (S finite)
Procedure: 1 Start with initial partition Π := {S}

2 Let B ∈ Π be a block and α ∈ Act an action
3 For every P ∈ B, let

α(P )α∗(P ) := {C ∈ Π | ex. P ′ ∈ C with P α−→
α̂=⇒ P ′}

be the set of P ’s α–successor blocks
4 Partition B =

∑k
i=1Bi such that

P,Q ∈ Bi ⇐⇒ α(P ) = α(Q)α∗(P ) =
α∗(Q) for every α ∈ Act

5 Let Π := (Π \ {B}) ∪ {B1, . . . , Bk}
6 Continue with (2) until Π is stable

Output: Partition Π̂ of S

Then, for every P,Q ∈ S,
P ∼ ≈ Q ⇐⇒ ex. B ∈ Π̂ with P,Q ∈ B
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The Partitioning Algorithm II

Remarks:
1 Since S is finite, α∗(P ) is effectively computable in step (3) of the

algorithm.
2 The ≈–partitioning algorithm can be interpreted as the application

of the ∼–partitioning algorithm to an appropriately modified LTS:
Theorem 9.1 for (S ,Act ,−→)

=̂ Theorem 6.2 for (S ,Act ,−→′)
where −→′ :=

⋃
α∈Act

α−→
′

with α−→
′
:= α̂=⇒

Proof.

similar to Theorem 6.2 (∼–partitioning algorithm)
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Decidability of Observation Congruence

Since the definition of ' requires the weak bisimilarity of the
intermediate states after the first step, Theorem 9.1 yields the
decidability of ':

Theorem 9.2 (Decidability of ')

Let (S ,Act ,−→) and Π̂ as in Theorem 9.1. Then, for every P,Q ∈ S,
P ' Q ⇐⇒ α+(P ) = α+(Q) for every α ∈ Act

where α+(P ) := {C ∈ Π̂ | ex. P ′ ∈ C with P α=⇒ P ′}.

Proof.

omitted

Example 9.3

on the board
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The Setting

Goal: design of a communication protocol which guarantees reliable
data transfer over unreliable channels

Overview:
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Working Principle
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Sender transfers data (from a given finite set D) to Receiver using
channel Trans
Receiver confirms reception via Ack
Properties of channels:

unidirectional data transfer
capacity: one message
( =⇒ sequential, i.e., respects order of messages)
detection of transmission errors
(loss/duplication/corruption of messages)
errors reported to target process

Idea: use redundancy (additional control bit) to ensure safeness of
data transfer
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Modelling of Channels
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Trans transmits frames of the following form:

F := {db | d ∈ D, b ∈ {0, 1}} (finite)

It detects transmission errors and reports it to Receiver :

Trans =
∑
f∈F

sendf .(transf .Trans︸ ︷︷ ︸
successful

+ trans⊥.Trans︸ ︷︷ ︸
error

)

Ack behaves like Trans but transmits only control bits:

Ack =
∑

b∈{0,1}

replyb.(ack b.Ack︸ ︷︷ ︸
successful

+ ack⊥.Ack︸ ︷︷ ︸
error

)
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Design Goal
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Under the above side conditions, give CCS implementations of Sender
and Receiver such that the overall system works correctly, i.e., behaves
like a one–element buffer:

Buffer(
−−−−→
accept ,

−−−−→
deliver) =

∑
d∈D

acceptd.Bufferd(
−−−−→
accept ,

−−−−→
deliver)

Bufferd(
−−−−→
accept ,

−−−−→
deliver) = deliverd.Buffer(

−−−−→
accept ,

−−−−→
deliver)

where
−−−−→
accept := (acceptd1 , . . . , acceptdn

)

and
−−−−→
deliver := (deliverd1 , . . . , deliverdn)

for D = {d1, . . . , dn}
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