
Modeling Concurrent and Probabilistic Systems
Lecture 9: Decidability of Observation Congruence

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Outline

1 Repetition: Observation Congruence

2 Decidability of Observation Congruence

3 The Alternating Bit Protocol

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2

Repetition: Definition of Obs. Congruence

Goal: introduce an equivalence which has most of the desirable
properties of ≈ and which is preserved under all CCS operators

Definition

P,Q ∈ Prc are called observationally congruent (notation: P ' Q) if,
for every α ∈ Act ,

1 P
α−→ P ′ =⇒ ex. Q′ ∈ Prc such that Q α=⇒ Q′ and P ′ ≈ Q′

2 Q
α−→ Q′ =⇒ ex. P ′ ∈ Prc such that P α=⇒ P ′ and P ′ ≈ Q′

Remark: ' differs from ≈ only in the use of α=⇒ rather than α̂=⇒, i.e.,
it requires τ -actions from P or Q to be simulated by at least one τ -step
in the other process. This only applies to the first step; the successors
just have to satisfy P ′ ≈ Q′ (and not P ′ ' Q′).

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: Properties of Obs. Congruence

Properties

1 LTS (P) = LTS (Q)
=⇒ P ∼ Q
=⇒ P ' Q
=⇒ P ≈ Q
=⇒ T̂r(P) = T̂r(Q)

2 ' is an equivalence relation
3 ' is (non-τ) deadlock sensitive
4 ' is a CCS congruence
5 For every P,Q ∈ Prc,

P ' Q ⇐⇒ P +R ≈ Q+R for every R ∈ Prc
6 For every P,Q ∈ Prc,

P ≈ Q ⇐⇒ P ' Q or P ' τ.Q or τ.P ' Q

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4

Outline

1 Repetition: Observation Congruence

2 Decidability of Observation Congruence

3 The Alternating Bit Protocol

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5

The Problem

We now show that the word problem for observation equivalence

Problem

Given: P,Q ∈ Prc
Question: P ' Q?

is decidable for finite–state processes (i.e., for those with
|S (P)|, |S (Q)| <∞ where S (P) := {P ′ ∈ Prc | P −→∗ P ′})
(in general it is undecidable).

Since the definition of ' directly relies on ≈ (cf. Definitions 7.6 and
8.2), we first extend the partitioning algorithm from ∼ (Theorem 6.2)
to ≈.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6

The Partitioning Algorithm I

Theorem 9.1 (Partitioning algorithm for ∼≈)

Input: LTS (S ,Act ,−→) (S finite)
Procedure: 1 Start with initial partition Π := {S}

2 Let B ∈ Π be a block and α ∈ Act an action
3 For every P ∈ B, let

α(P)α∗(P) := {C ∈ Π | ex. P ′ ∈ C with P α−→
α̂=⇒ P ′}

be the set of P ’s α–successor blocks
4 Partition B =

∑k
i=1Bi such that

P,Q ∈ Bi ⇐⇒ α(P) = α(Q)α∗(P) =
α∗(Q) for every α ∈ Act

5 Let Π := (Π \ {B}) ∪ {B1, . . . , Bk}
6 Continue with (2) until Π is stable

Output: Partition Π̂ of S

Then, for every P,Q ∈ S,
P ∼ ≈ Q ⇐⇒ ex. B ∈ Π̂ with P,Q ∈ B

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

The Partitioning Algorithm II

Remarks:
1 Since S is finite, α∗(P) is effectively computable in step (3) of the

algorithm.
2 The ≈–partitioning algorithm can be interpreted as the application

of the ∼–partitioning algorithm to an appropriately modified LTS:
Theorem 9.1 for (S ,Act ,−→)

=̂ Theorem 6.2 for (S ,Act ,−→′)
where −→′ :=

⋃
α∈Act

α−→
′

with α−→
′
:= α̂=⇒

Proof.

similar to Theorem 6.2 (∼–partitioning algorithm)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Decidability of Observation Congruence

Since the definition of ' requires the weak bisimilarity of the
intermediate states after the first step, Theorem 9.1 yields the
decidability of ':

Theorem 9.2 (Decidability of ')

Let (S ,Act ,−→) and Π̂ as in Theorem 9.1. Then, for every P,Q ∈ S,
P ' Q ⇐⇒ α+(P) = α+(Q) for every α ∈ Act

where α+(P) := {C ∈ Π̂ | ex. P ′ ∈ C with P α=⇒ P ′}.

Proof.

omitted

Example 9.3

on the board

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

Outline

1 Repetition: Observation Congruence

2 Decidability of Observation Congruence

3 The Alternating Bit Protocol

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

The Setting

Goal: design of a communication protocol which guarantees reliable
data transfer over unreliable channels

Overview:

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
��1 PPPPq

����)PP
PPi

--accept
send trans

ack reply

deliverSender

Trans

Receiver

Ack

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Working Principle

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Sender transfers data (from a given finite set D) to Receiver using
channel Trans
Receiver confirms reception via Ack
Properties of channels:

unidirectional data transfer
capacity: one message
(=⇒ sequential, i.e., respects order of messages)
detection of transmission errors
(loss/duplication/corruption of messages)
errors reported to target process

Idea: use redundancy (additional control bit) to ensure safeness of
data transfer

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

Modelling of Channels

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Trans transmits frames of the following form:

F := {db | d ∈ D, b ∈ {0, 1}} (finite)

It detects transmission errors and reports it to Receiver :

Trans =
∑
f∈F

sendf .(transf .Trans︸ ︷︷ ︸
successful

+ trans⊥.Trans︸ ︷︷ ︸
error

)

Ack behaves like Trans but transmits only control bits:

Ack =
∑

b∈{0,1}

replyb.(ack b.Ack︸ ︷︷ ︸
successful

+ ack⊥.Ack︸ ︷︷ ︸
error

)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13

Design Goal

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Under the above side conditions, give CCS implementations of Sender
and Receiver such that the overall system works correctly, i.e., behaves
like a one–element buffer:

Buffer(
−−−−→
accept ,

−−−−→
deliver) =

∑
d∈D

acceptd.Bufferd(
−−−−→
accept ,

−−−−→
deliver)

Bufferd(
−−−−→
accept ,

−−−−→
deliver) = deliverd.Buffer(

−−−−→
accept ,

−−−−→
deliver)

where
−−−−→
accept := (acceptd1 , . . . , acceptdn

)

and
−−−−→
deliver := (deliverd1 , . . . , deliverdn)

for D = {d1, . . . , dn}
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14

	Repetition: Observation Congruence
	Decidability of Observation Congruence
	The Alternating Bit Protocol

