

Modeling Concurrent and Probabilistic Systems

Lecture 9: Decidability of Observation Congruence

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/mcps07/>

Winter Semester 2007/08

- 1 Repetition: Observation Congruence
- 2 Decidability of Observation Congruence
- 3 The Alternating Bit Protocol

Goal: introduce an equivalence which has most of the desirable properties of \approx and which is preserved under all CCS operators

Definition

$P, Q \in Prc$ are called **observationally congruent** (notation: $P \simeq Q$) if, for every $\alpha \in Act$,

- ① $P \xrightarrow{\alpha} P' \implies$ ex. $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \approx Q'$
- ② $Q \xrightarrow{\alpha} Q' \implies$ ex. $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \approx Q'$

Remark: \simeq differs from \approx only in the use of $\xrightarrow{\alpha}$ rather than $\xrightarrow{\hat{\alpha}}$, i.e., it requires τ -actions from P or Q to be simulated by at least one τ -step in the other process. This only applies to the first step; the successors just have to satisfy $P' \approx Q'$ (and not $P' \simeq Q'$).

Properties

① $LTS(P) = LTS(Q)$

$$\implies P \sim Q$$

$$\implies P \simeq Q$$

$$\implies P \approx Q$$

$$\implies \hat{Tr}(P) = \hat{Tr}(Q)$$

② \simeq is an equivalence relation

③ \simeq is (non- τ) deadlock sensitive

④ \simeq is a CCS congruence

⑤ For every $P, Q \in Prc$,

$$P \simeq Q \iff P + R \approx Q + R \text{ for every } R \in Prc$$

⑥ For every $P, Q \in Prc$,

$$P \approx Q \iff P \simeq Q \text{ or } P \simeq \tau.Q \text{ or } \tau.P \simeq Q$$

- ① Repetition: Observation Congruence
- ② Decidability of Observation Congruence
- ③ The Alternating Bit Protocol

We now show that the word problem for observation equivalence

Problem

Given: $P, Q \in Prc$

Question: $P \simeq Q?$

is decidable for finite-state processes (i.e., for those with $|S(P)|, |S(Q)| < \infty$ where $S(P) := \{P' \in Prc \mid P \xrightarrow{*} P'\}$)
(in general it is undecidable).

Since the definition of \simeq directly relies on \approx (cf. Definitions 7.6 and 8.2), we first extend the partitioning algorithm from \sim (Theorem 6.2) to \approx .

The Partitioning Algorithm I

Theorem 9.1 (Partitioning algorithm for $\sim \approx$)

Input: $LTS (S, Act, \longrightarrow) (S \text{ finite})$

Procedure: ① *Start with initial partition $\Pi := \{S\}$*

② *Let $B \in \Pi$ be a block and $\alpha \in Act$ an action*

③ *For every $P \in B$, let*

$$\alpha(P)\alpha^*(P) := \{C \in \Pi \mid \text{ex. } P' \in C \text{ with } P \xrightarrow{\alpha} \xrightarrow{\hat{\alpha}} P'\}$$

be the set of P 's α -successor blocks

④ *Partition $B = \sum_{i=1}^k B_i$ such that*

$$P, Q \in B_i \iff \alpha(P) = \alpha(Q)\alpha^*(P) = \alpha^*(Q) \text{ for every } \alpha \in Act$$

⑤ *Let $\Pi := (\Pi \setminus \{B\}) \cup \{B_1, \dots, B_k\}$*

⑥ *Continue with (2) until Π is stable*

Output: Partition $\hat{\Pi}$ of S

Then, for every $P, Q \in S$,

Remarks:

- ① Since S is finite, $\alpha^*(P)$ is effectively computable in step (3) of the algorithm.
- ② The \approx -partitioning algorithm can be interpreted as the application of the \sim -partitioning algorithm to an appropriately modified LTS:

$$\begin{aligned} & \text{Theorem 9.1 for } (S, Act, \longrightarrow) \\ \hat{=} & \text{ Theorem 6.2 for } (S, Act, \longrightarrow') \\ \text{where } & \longrightarrow' := \bigcup_{\alpha \in Act} \xrightarrow{\alpha} \text{ with } \xrightarrow{\alpha} := \hat{\alpha} \longrightarrow \end{aligned}$$

Proof.

similar to Theorem 6.2 (\sim -partitioning algorithm)

Decidability of Observation Congruence

Since the definition of \simeq requires the weak bisimilarity of the intermediate states after the first step, Theorem 9.1 yields the decidability of \simeq :

Theorem 9.2 (Decidability of \simeq)

Let $(S, Act, \longrightarrow)$ and $\hat{\Pi}$ as in Theorem 9.1. Then, for every $P, Q \in S$,

$$P \simeq Q \iff \alpha^+(P) = \alpha^+(Q) \text{ for every } \alpha \in Act$$

where $\alpha^+(P) := \{C \in \hat{\Pi} \mid \text{ex. } P' \in C \text{ with } P \xrightarrow{\alpha} P'\}$.

Proof.

omitted

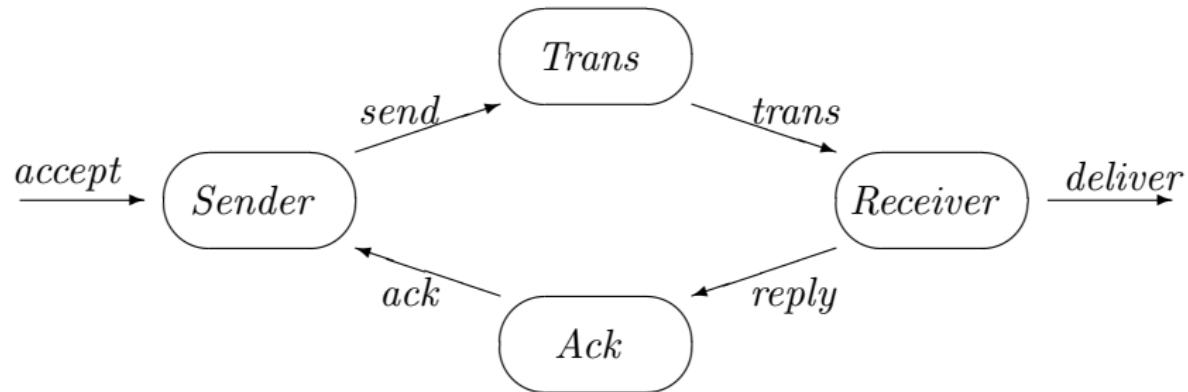
Example 9.3

on the board

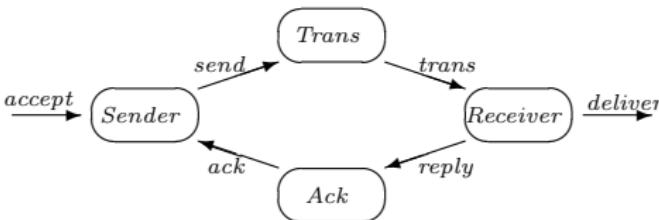
- 1 Repetition: Observation Congruence
- 2 Decidability of Observation Congruence
- 3 The Alternating Bit Protocol

Goal: design of a communication protocol which guarantees **reliable data transfer** over **unreliable channels**

Overview:



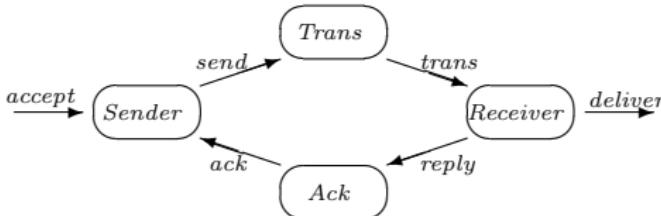
Working Principle



- *Sender* transfers data (from a given finite set D) to *Receiver* using channel *Trans*
- *Receiver* confirms reception via *Ack*
- Properties of channels:
 - unidirectional data transfer
 - capacity: one message
(\Rightarrow sequential, i.e., respects order of messages)
 - detection of transmission errors
(loss/duplication/corruption of messages)
 - errors reported to target process

Idea: use redundancy (additional control bit) to ensure safeness of data transfer

Modelling of Channels



- *Trans* transmits **frames** of the following form:

$$F := \{db \mid d \in D, b \in \{0, 1\}\} \quad (\text{finite})$$

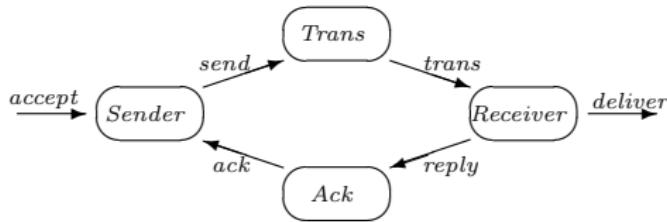
It detects **transmission errors** and reports it to *Receiver*:

$$Trans = \sum_{f \in F} send_f \cdot (\underbrace{\overline{trans}_f \cdot Trans}_{\text{successful}} + \underbrace{\overline{trans}_\perp \cdot Trans}_{\text{error}})$$

- *Ack* behaves like *Trans* but transmits only **control bits**:

$$Ack = \sum_{b \in \{0, 1\}} reply_b \cdot (\underbrace{\overline{ack}_b \cdot Ack}_{\text{successful}} + \underbrace{\overline{ack}_\perp \cdot Ack}_{\text{error}})$$

Design Goal



Under the above side conditions, give CCS implementations of *Sender* and *Receiver* such that the overall system works correctly, i.e., behaves like a **one-element buffer**:

$$\begin{aligned} \text{Buffer}(\overrightarrow{\text{accept}}, \overrightarrow{\text{deliver}}) &= \sum_{d \in D} \text{accept}_d.\text{Buffer}_d(\overrightarrow{\text{accept}}, \overrightarrow{\text{deliver}}) \\ \text{Buffer}_d(\overrightarrow{\text{accept}}, \overrightarrow{\text{deliver}}) &= \overrightarrow{\text{deliver}_d}.\text{Buffer}(\overrightarrow{\text{accept}}, \overrightarrow{\text{deliver}}) \end{aligned}$$

where

$$\begin{aligned} \overrightarrow{\text{accept}} &:= (\text{accept}_{d_1}, \dots, \text{accept}_{d_n}) \\ \text{and } \overrightarrow{\text{deliver}} &:= (\text{deliver}_{d_1}, \dots, \text{deliver}_{d_n}) \\ \text{for } D &= \{d_1, \dots, d_n\} \end{aligned}$$