
Modeling Concurrent and Probabilistic Systems
Exercises, Series 7

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/


Exercise 1a)

Modify the ABP and replace the failure situations ack⊥ and trans⊥ by
a timeout handling to model lossy channels. The modified version of
the ABP should behave as follows:

If Sender sends a message, it starts a timer. If a timeout occurs
before the acknowledgement is received, the message is
retransmitted. Messages can get lost.
If Receiver sends an acknowledgement, it starts a timer. If a
timeout occurs before the next message is received, it retransmits
the acknowledgement. Acknowledgements can get lost.

Give the modified process definition for the alternating bit protocol.
Use the following timer process:

Timer = start .(timeout .Timer + stop.Timer).

Compose your new Sender and Receiver each with a Timer process!

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2



Solution 1a) – Sender

Sender = new {timeout , start , stop}
(
Sender0 ‖ Timer

)

Sender b =
∑

d∈D

acceptd.Senddb

Senddb = senddb.start .Waitdb

Waitdb = ack b.(stop.Sender 1−b + timeout .Sender 1−b)

+ ack1−b.(stop.Senddb + timeout .Senddb)

+ timeout .Senddb

Timer = start .(timeout .Timer + stop.Timer)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3



Solution 1a) – Receiver

Receiver = new {timeout , start , stop}
(
Receiver ′0 ‖ Timer

)

Receiver ′0 =
∑

d∈D

transd0.Replyd0

+
∑

d∈D

transd1.reply1.start .Receiver0

Receiver b =
∑

d∈D

transdb.(timeout .Replydb + stop.Replydb)

+
∑

d∈D

transd(1−b).(timeout .reply1−b.start .Receiver b+
stop.reply1−b.start .Receiver b)

+ timeout .reply1−b.start .Receiver b

Replydb = deliverd.replyb.start .Receiver 1−b

Timer = start .(timeout .Timer + stop.Timer)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4



Solution 1a) – System

Trans =
∑

d∈D
b∈{0,1}

senddb.
(
transdb.Trans
︸ ︷︷ ︸

msg success

+ Trans
︸ ︷︷ ︸

msg loss

)

Ack =
∑

b∈{0,1}

replyb.
(
ack b.Ack
︸ ︷︷ ︸

ack success

+ Ack
︸︷︷︸

ack loss

)

ABP(accept , deliver) = new L
(
Sender ‖ Trans ‖ Ack ‖ Receiver

)

where L = {senddb, transdb, reply b, ack b | d ∈ D, b ∈ {0, 1}}.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5



Exercise 1b)

Minimize the LTS of the Sender and its Timer by computing its
quotient under weak bisimulation! Use the partitioning algorithm from
the lecture!

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6



Solution 1b)

LTS of Sender ‖ Timer :

S0 ‖ T

Sndd0 ‖ T

start .Waitd0 ‖ T

Waitd0 ‖ T ′

stop.Sndd0 + to.Sndd0 ‖ T ′ stop.S1 + to.S1 ‖ T ′

S1 ‖ T

Sndd1 ‖ T

start .Waitd1 ‖ T

Waitd1 ‖ T ′

stop.Sndd1 + to.Sndd1 ‖ T ′stop.S0 + to.S0 ‖ T ′

acceptd

sendd0

τ

ack1 ack0

τ

acceptd

sendd1

τ

ack0ack1

τ
τ τ

τ
τ

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7



Solution 1b)

Partitioning algorithm, first iteration:

P S0 ‖ T Sndd0 ‖ T start .Wd0 ‖ T Wd0 ‖ T ′ (stop.S1 (stop.Sndd0

+to.S1) ‖ T ′ +to.Sndd0) ‖ T ′

accept∗ {S} ∅ ∅ ∅ {S} ∅

sendd0
∗

∅ {S} {S} {S} ∅ {S}

sendd1
∗

∅ ∅ ∅ ∅ ∅ ∅
ack∗

0 ∅ ∅ {S} {S} ∅ ∅
ack∗

1 ∅ ∅ {S} {S} ∅ ∅
τ∗ {S} {S} {S} {S} {S} {S}

Block B1 B2 B3 B3 B1 B2

P S1 ‖ T Sndd1 ‖ T start.Wd1 ‖ T Wd1 ‖ T ′ (stop.S0 (stop.Sndd1

+to.S0) ‖ T ′ +to.Sndd1) ‖ T ′

accept∗ {S} ∅ ∅ ∅ {S} ∅

sendd0
∗

∅ ∅ ∅ ∅ ∅ ∅

sendd1
∗

∅ {S} {S} {S} ∅ {S}
ack∗

0 ∅ ∅ {S} {S} ∅ ∅
ack∗

1 ∅ ∅ {S} {S} ∅ ∅
τ∗ {S} {S} {S} {S} {S} {S}

Block B1 B4 B5 B5 B1 B4

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Solution 1b)

Second iteration:
P S0 ‖ T stop.S0 + to.S0 ‖. S1 ‖ T stop.S1 + to.S1 ‖

(to.T + stop.T ) . (to.T + stop.T )
accept∗ {B2} {B2} . {B4} {B4}
send∗

d0
∅ ∅ . ∅ ∅

send∗

d1
∅ ∅ . ∅ ∅

ack∗

0 ∅ ∅ . ∅ ∅
ack∗

1 ∅ ∅ . ∅ ∅
τ∗ {B1} {B1,1} {B1} {B1,1} .{B1} {B1,2} {B1} {B1,2}

P Sndd0 ‖ T stop.Sndd0 + to.Sndd0 start .waitd0 ‖ T Wd0 ‖
‖ to.T + stop.T (to.T + stop.T )

accept∗ ∅ ∅ ∅ ∅
send∗

d0
{B3, B2} {B3, B2} {B2, B3} {B2, B3}

send∗

d1
∅ ∅ ∅ ∅

ack∗

0 ∅ ∅ {B1} {B1,2} {B1} {B1,2}
ack∗

1 ∅ ∅ {B2} {B2}
τ∗ {B2} {B2} {B3, B2} {B3, B2}

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9



Solution 1b)

Second iteration (continued):

P Sndd1 ‖ T stop.Sndd1 + to.Sndd1 start .waitd1 ‖ T Wd1 ‖
‖ (to.T + stop.T ) (to.T + stop.T )

accept∗ ∅ ∅ ∅ ∅
send∗

d0
∅ ∅ ∅ ∅

send∗

d1
{B5, B4} {B5, B4} {B5, B4} {B5, B4}

ack∗

0 ∅ ∅ {B4} {B4}
ack∗

1 ∅ ∅ {B1} {B1,1} {B1} {B1,1}
τ∗ {B4} {B4} {B5, B4} {B5, B4}

⇒ split B1 into B1,1 and B1,2, all other blocks remain unchanged.
Result: Weak bisimulation quotient with six states.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10



Solution 1b)

Reduced LTS (w.r.t. weak bisimilarity):

S0 ‖ T

Snd0 ‖ T

Waitd0 ‖ T ′

S1 ‖ T

Snd1 ‖ T

Waitd1 ‖ T ′

acceptd

sendd0

ack0

acceptd

sendd1

ack1

τ

τ

ack1

ack0

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11



Exercise 1c)

Do the same for the LTS of the Receiver and its Timer ! You may do
this directly, i.e. without applying the partitioning algorithm.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12



Solution 1c)

LTS of Receiver ‖ Timer :

R′
0 ‖ T

Rplyd0 ‖ T Rplyd1 ‖ T

reply0 .start .R1 ‖ T reply1 .start .R0 ‖ T

start .R1 ‖ T start .R0 ‖ T

R1 ‖ T ′ R0 ‖ T ′

(to.reply0 .start .R1 + stop.reply0 .start .R1) ‖ T ′

to.Rplyd1 + stop.Rplyd1 ‖ T ′ to.Rplyd0 + stop.Rplyd0 ‖ T ′

(to.reply1 .start .R0 + stop.reply1 .start .R0) ‖ T ′

transd0

deliverd deliverd

reply0 reply1

τ τ

transd0

τ

τ (timeout)

transd1

ττ

transd0
transd1

τ

τ (timeout)

transd1

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13



Solution 1c)

Reduced LTS (w.r.t. weak bisimilarity):

R′
0 ‖ T

Rplyd0 ‖ T Rplyd1 ‖ T

reply0 .start .R1 ‖ T reply1 .start .R0 ‖ T

R1 ‖ T ′ R0 ‖ T ′

transd0

transd1

deliverd deliverd

reply0 reply1

transd1
transd0

transd0 ττ transd1

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14



Exercise/Solution 1d)

Q: To prove the new protocol correct, one could replace the
Sender ‖ Timer and Receiver ‖ Timer components by their quotients
under weak bisimulation to obtain a smaller LTS. Why is this approach
incorrect in general? Why can it still be applied in our setting?

A: Weak bisimilarity is not a congruence. In general, if P1 ≈ P2 and
Q1 ≈ Q2, P1 + Q1 6≈ P2 + Q2. However, weak bisimilarity is preserved
under parallel composition and restriction. As these are the only
operators we use to compose the ABP process, this is a valid approach.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15



Exercise 2

Show that the following simple communication protocol works correctly.
To this aim, prove that Protocol (a, f) is observationally congruent to a one-place
buffer:

Protocol (a, f) = new b, c, d, e
`

Sender(a, b, d, e) ‖ Medium(b, c, d) ‖ Receiver(c, e, f)
´

Sender (a, b, d, e) = a.Sender
′(a, b, d, e)

Sender
′(a, b, d, e) = b.

`

d .Sender
′(a, b, d, e) + e.Sender (a, b, d, e)

´

Medium(b, c, d) = b.
`

c.Medium(b, c, d) + d .Medium(b, c, d)
´

Receiver (c, e, f) = c.f .e .Receiver (c, e, f)

Here the single actions can be interpreted as follows:

a Sender is requested to transmit data

b Sender sends data along Medium

c Medium transmits data correctly

d Medium transmits data incorrectly

e Receiver acknowledges transmission

f Receiver delivers data

Reminder: the one-place buffer is defined by B(a, f) = a.f .B(a, f).

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16



Solution 2

Unrealistic: direct, error-free connection from Receiver to Sender (action e).
Transition system (S = Sender, R = Receiver, M = Medium; without new):

Protocol

S′ ‖ M ‖ R

(d.S′ + e.S) ‖ (c.M + d .M) ‖ R

(d.S′ + e.S) ‖ M ‖ f .e.R

(d.S′ + e.S) ‖ M ‖ e.RS ‖ M ‖ R

a
a

τ (c)

f

τ (e)

τ (b) τ (d)

≈ B

≈ f .B

One-place buffer: B
a

⇄

f

f .B ⇒ Protocol ≈ B

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 17



Solution 2

Moreover Protocol and B can only execute a

⇒ Protocol ≃ B (because neither Protocol nor B can execute a τ -action)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18


