

Modeling Concurrent and Probabilistic Systems

Exercises, Series 7

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/mcps07/>

Winter Semester 2007/08

Exercise 1a)

Modify the ABP and replace the failure situations ack_{\perp} and $trans_{\perp}$ by a timeout handling to model lossy channels. The modified version of the ABP should behave as follows:

- If *Sender* sends a message, it starts a timer. If a *timeout* occurs before the acknowledgement is received, the message is retransmitted. Messages can get lost.
- If *Receiver* sends an acknowledgement, it starts a timer. If a *timeout* occurs before the next message is received, it retransmits the acknowledgement. Acknowledgements can get lost.

Give the modified process definition for the alternating bit protocol.
Use the following timer process:

$$Timer = start.(\overline{timeout}.Timer + stop.Timer).$$

Compose your new *Sender* and *Receiver* each with a *Timer* process!

Solution 1a) – Sender

$$Sender = \mathbf{new} \{timeout, start, stop\} (Sender_0 \parallel Timer)$$

$$Sender_b = \sum_{d \in D} accept_d. Send_{db}$$

$$Send_{db} = \overline{send}_{db}. \overline{start}. Wait_{db}$$

$$\begin{aligned} Wait_{db} = & ack_b. (\overline{stop}. Sender_{1-b} + \mathbf{timeout}. Sender_{1-b}) \\ & + ack_{1-b}. (\overline{stop}. Send_{db} + \mathbf{timeout}. Send_{db}) \\ & + \mathbf{timeout}. Send_{db} \end{aligned}$$

$$Timer = start. (\overline{timeout}. Timer + stop. Timer)$$

Solution 1a) – Receiver

$$Receiver = \mathbf{new} \{timeout, start, stop\}(Receiver'_0 \parallel Timer)$$

$$Receiver'_0 = \sum_{d \in D} trans_{d0}.Reply_{d0}$$

$$+ \sum_{d \in D} trans_{d1}.\overline{reply}_1.\overline{start}.Receiver_0$$

$$Receiver_b = \sum_{d \in D} trans_{db}.(\mathbf{timeout}.Reply_{db} + \overline{stop}.Reply_{db})$$
$$+ \sum_{d \in D} trans_{d(1-b)}.(\overline{\mathbf{timeout}}.\overline{reply}_{1-b}.\overline{start}.Receiver_b +$$
$$\overline{stop}.\overline{reply}_{1-b}.\overline{start}.Receiver_b)$$
$$+ \mathbf{timeout}.\overline{reply}_{1-b}.\overline{start}.Receiver_b$$

$$Reply_{db} = \overline{deliver}_d.\overline{reply}_b.\overline{start}.Receiver_{1-b}$$

$$Timer = start.(\overline{timeout}.Timer + stop.TIMER)$$

Solution 1a) – System

$$Trans = \sum_{\substack{d \in D \\ b \in \{0,1\}}} send_{db}. \left(\underbrace{\overline{trans}_{db}. Trans}_{\text{msg success}} + \underbrace{\textcolor{red}{Trans}}_{\text{msg loss}} \right)$$

$$Ack = \sum_{b \in \{0,1\}} reply_b. \left(\underbrace{\overline{ack}_b. Ack}_{\text{ack success}} + \underbrace{\textcolor{red}{Ack}}_{\text{ack loss}} \right)$$

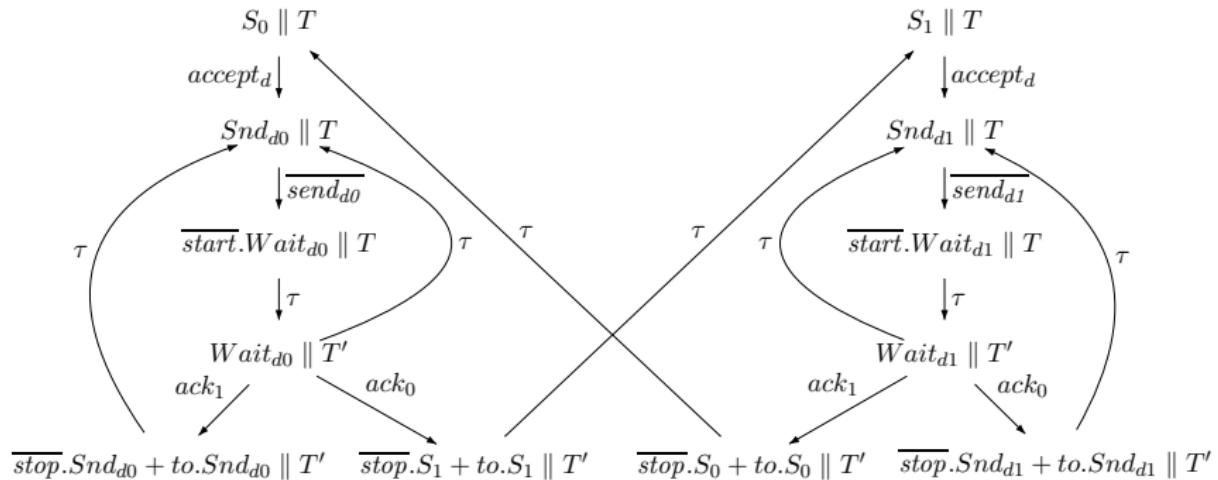
$$ABP(accept, deliver) = \mathbf{new} \ L \ (Sender \parallel Trans \parallel Ack \parallel Receiver)$$

where $L = \{send_{db}, trans_{db}, reply_b, ack_b \mid d \in D, b \in \{0, 1\}\}$.

Minimize the LTS of the *Sender* and its *Timer* by computing its quotient under weak bisimulation! Use the partitioning algorithm from the lecture!

Solution 1b)

LTS of $Sender \parallel Timer$:



Solution 1b)

Partitioning algorithm, first iteration:

P	$S_0 \parallel T \ Snd_{d0} \parallel T \ \overline{start}.W_{d0} \parallel T \ W_{d0} \parallel T'$			$(\overline{stop}.S_1 + to.S_1) \parallel T'$	$(\overline{stop}.Snd_{d0} + to.Snd_{d0}) \parallel T'$
$accept^*$	$\{S\}$	\emptyset	\emptyset	\emptyset	$\{S\}$
$\overline{send_{d0}}^*$	\emptyset	$\{S\}$	$\{S\}$	$\{S\}$	\emptyset
$\overline{send_{d1}}^*$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
ack_0^*	\emptyset	\emptyset	$\{S\}$	$\{S\}$	\emptyset
ack_1^*	\emptyset	\emptyset	$\{S\}$	$\{S\}$	\emptyset
τ^*	$\{S\}$	$\{S\}$	$\{S\}$	$\{S\}$	$\{S\}$
Block	B_1	B_2	B_3	B_3	B_1
P	$S_1 \parallel T \ Snd_{d1} \parallel T \ start.W_{d1} \parallel T \ W_{d1} \parallel T'$			$(\overline{stop}.S_0 + to.S_0) \parallel T'$	$(\overline{stop}.Snd_{d1} + to.Snd_{d1}) \parallel T'$
$accept^*$	$\{S\}$	\emptyset	\emptyset	\emptyset	$\{S\}$
$\overline{send_{d0}}^*$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
$\overline{send_{d1}}^*$	\emptyset	$\{S\}$	$\{S\}$	$\{S\}$	\emptyset
ack_0^*	\emptyset	\emptyset	$\{S\}$	$\{S\}$	\emptyset
ack_1^*	\emptyset	\emptyset	$\{S\}$	$\{S\}$	\emptyset
τ^*	$\{S\}$	$\{S\}$	$\{S\}$	$\{S\}$	$\{S\}$
Block	B_1	B_4	B_5	B_5	B_1

Solution 1b)

Second iteration:

P	$S_0 \parallel T$	$\overline{stop}.S_0 + to.S_0 \parallel .$ $(to.T + stop.T)$	$S_1 \parallel T$	$\overline{stop}.S_1 + to.S_1 \parallel$ $(to.T + stop.T)$
$accept^*$	$\{B_2\}$	$\{B_2\}$	$.$	$\{B_4\}$
$send_{d0}^*$	\emptyset	\emptyset	$.$	\emptyset
$send_{d1}^*$	\emptyset	\emptyset	$.$	\emptyset
ack_0^*	\emptyset	\emptyset	$.$	\emptyset
ack_1^*	\emptyset	\emptyset	$.$	\emptyset
τ^*	$\{B_1\} \rightsquigarrow \{B_{1,1}\}$	$\{B_1\} \rightsquigarrow \{B_{1,1}\}$	$. \{B_1\} \rightsquigarrow \{B_{1,2}\}$	$\{B_1\} \rightsquigarrow \{B_{1,2}\}$
P	$Snd_{d0} \parallel T$ $\parallel to.T + stop.T$	$\overline{stop}.Snd_{d0} + to.Snd_{d0}$	$start.wait_{d0} \parallel T$ $(to.T + stop.T)$	$W_{d0} \parallel$
$accept^*$	\emptyset	\emptyset	\emptyset	\emptyset
$send_{d0}^*$	$\{B_3, B_2\}$	$\{B_3, B_2\}$	$\{B_2, B_3\}$	$\{B_2, B_3\}$
$send_{d1}^*$	\emptyset	\emptyset	\emptyset	\emptyset
ack_0^*	\emptyset	\emptyset	$\{B_1\} \rightsquigarrow \{B_{1,2}\}$	$\{B_1\} \rightsquigarrow \{B_{1,2}\}$
ack_1^*	\emptyset	\emptyset	$\{B_2\}$	$\{B_2\}$
τ^*	$\{B_2\}$	$\{B_2\}$	$\{B_3, B_2\}$	$\{B_3, B_2\}$

Second iteration (continued):

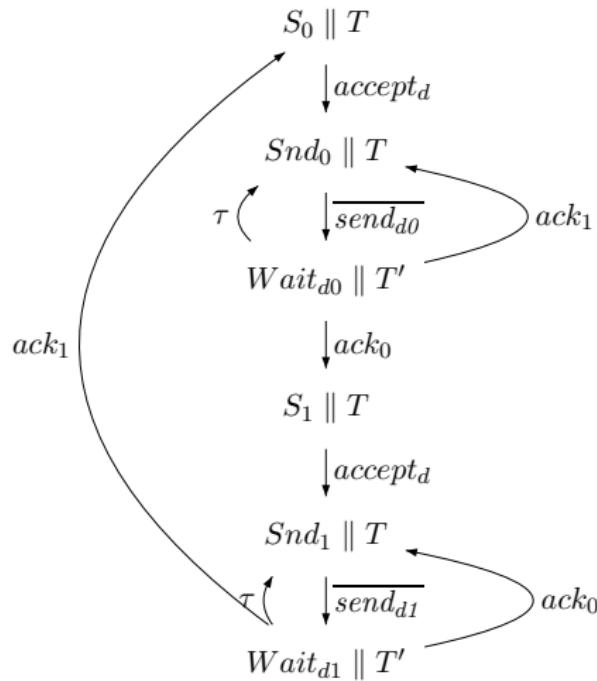
P	$Snd_{d1} \parallel T \overline{stop}.Snd_{d1} + to.Snd_{d1}$ $\parallel (\overline{to}.T + stop.T)$	$start.wait_{d1} \parallel T$ $\parallel (\overline{to}.T + stop.T)$
$accept^*$	\emptyset	\emptyset
$send^*_{d0}$	\emptyset	\emptyset
$send^*_{d1}$	$\{B_5, B_4\}$	$\{B_5, B_4\}$
ack^*_0	\emptyset	$\{B_4\}$
ack^*_1	\emptyset	$\{B_4\}$
τ^*	$\{B_4\}$	$\{B_5, B_4\}$

\Rightarrow split B_1 into $B_{1,1}$ and $B_{1,2}$, all other blocks remain unchanged.

Result: Weak bisimulation quotient with six states.

Solution 1b)

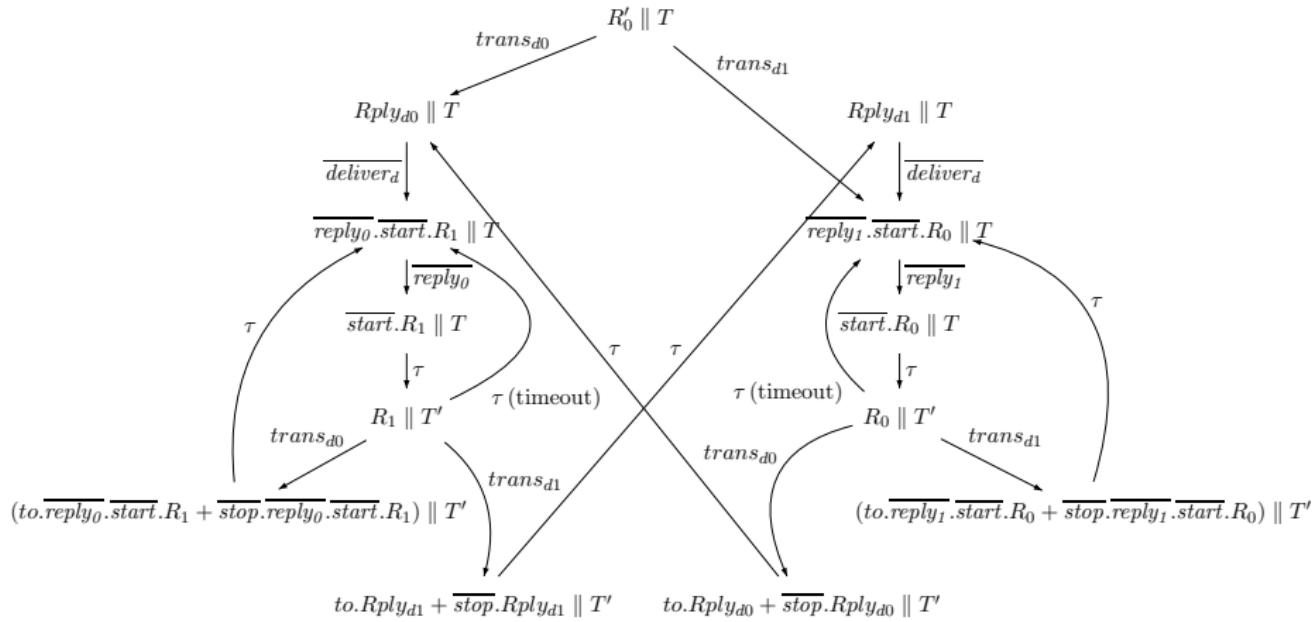
Reduced LTS (w.r.t. weak bisimilarity):



Do the same for the LTS of the *Receiver* and its *Timer*! You may do this directly, i.e. without applying the partitioning algorithm.

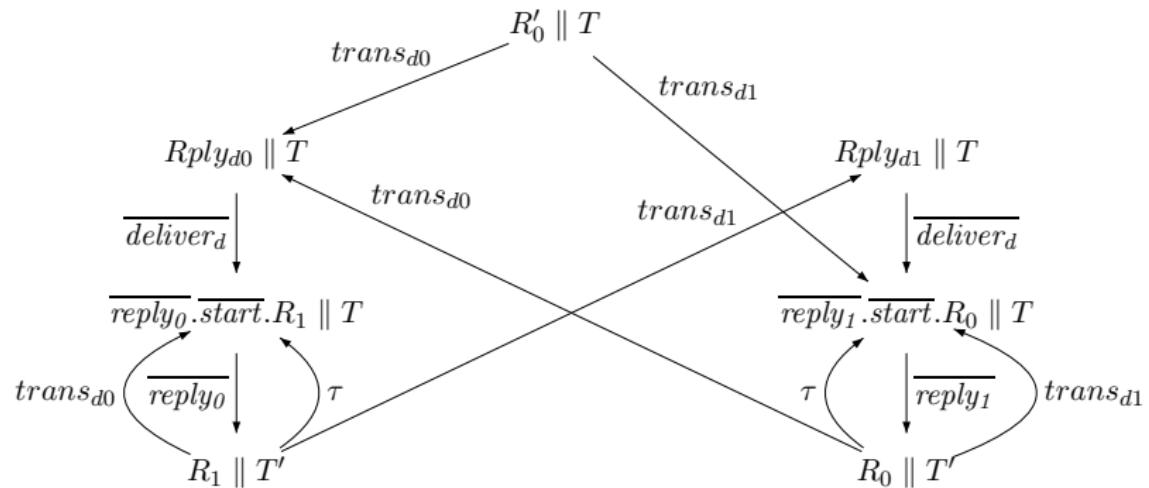
Solution 1c)

LTS of *Receiver* || *Timer*:



Solution 1c)

Reduced LTS (w.r.t. weak bisimilarity):



Q: To prove the new protocol correct, one could replace the $Sender \parallel Timer$ and $Receiver \parallel Timer$ components by their quotients under weak bisimulation to obtain a smaller LTS. Why is this approach incorrect in general? Why can it still be applied in our setting?

A: Weak bisimilarity is not a congruence. In general, if $P_1 \approx P_2$ and $Q_1 \approx Q_2$, $P_1 + Q_1 \not\approx P_2 + Q_2$. However, weak bisimilarity is preserved under parallel composition and restriction. As these are the only operators we use to compose the ABP process, this is a valid approach.

Exercise 2

Show that the following simple communication protocol works correctly.

To this aim, prove that $Protocol(a, f)$ is observationally congruent to a one-place buffer:

$$Protocol(a, f) = \text{new } b, c, d, e \ (Sender(a, b, d, e) \parallel Medium(b, c, d) \parallel Receiver(c, e, f))$$

$$Sender(a, b, d, e) = a.Sender'(a, b, d, e)$$

$$Sender'(a, b, d, e) = \bar{b}.(d.Sender'(a, b, d, e) + e.Sender(a, b, d, e))$$

$$Medium(b, c, d) = b.(\bar{c}.Medium(b, c, d) + \bar{d}.Medium(b, c, d))$$

$$Receiver(c, e, f) = c.\bar{f}.\bar{e}.Receiver(c, e, f)$$

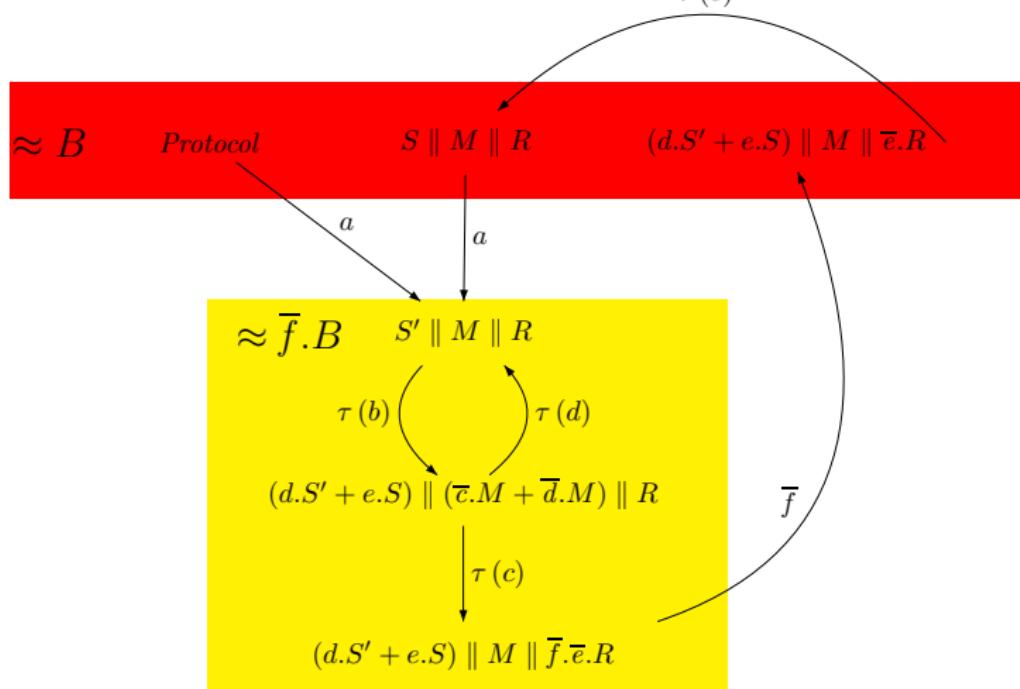
Here the single actions can be interpreted as follows:

- a* *Sender* is requested to transmit data
- b* *Sender* sends data along *Medium*
- c* *Medium* transmits data correctly
- d* *Medium* transmits data incorrectly
- e* *Receiver* acknowledges transmission
- f* *Receiver* delivers data

Reminder: the one-place buffer is defined by $B(a, f) = a.\bar{f}.B(a, f)$.

Solution 2

Unrealistic: direct, error-free connection from Receiver to Sender (action e).
Transition system (S = Sender, R = Receiver, M = Medium; without **new**):



One-place buffer: $B \xrightleftharpoons[\bar{f}]{a} \bar{f}.B \Rightarrow \text{Protocol} \approx B$

Moreover $Protocol$ and B can only execute a

$\Rightarrow Protocol \simeq B$ (because neither $Protocol$ nor B can execute a τ -action)