Software Modeling and Verification Prof. Dr. Ir. J.-P. Katoen

Lehrstuhl fiir Informatik 2 Priv.-Doz. Dr. T. Noll

RWTH Aachen University T. Han, M. Neuh&ufler
Modeling Concurrent and Probabilistic Systems

Winter Term 07/08

— Solution 3 —

Exercise 1 (44 1 points)

a) We show that p = (Semg(get, put), S (get, put))U{(Sem} (get, put), S;, (get, put)|| ... || S;, (get, put)) |
0<k<mn,> % i =k} is astrong bisimulation:

Semji(get,put) — — — L'~ = — iy S, (get.put) (Zjris =)
o it
Semjt,, (get, put)—\ P L S, (get, put) | put i =k+1)

Semj_,(get, put)— — o 471 Si;_/(get,put) (E? 123, =k—1)

This is the most general case (for k& = 0, there are no put-transitions, and for & = n no get-
transitions). The states on the right-hand side actually represent all different states for which the
summation condition holds — they are equivalent with respect to p.

b) See Example 2.3 for the specifications of the sequential and parallel two-place buffer.
The corresponding L'TSs are:

out

out

Assuming By ~ Bj, it then follows that By ~ Bj. However, B/, has an outgoing 7-transition while
By does not, therefore By « BY. From this it follows that the two LTSs are not strongly bisimilar.

Exercise 2 (4 points)
a) P+ nil ~ P

e P+nil & P/ implies P % P’ for all a € A and clearly P’ ~ P’.
e P % P obviously implies P + nil = P’ for all a € A and P’ ~ P'.

Hence P +nil ~ P
b) P+ P ~ P:

e P+ P % P implies P % P’ for all a € A and clearly P’ ~ P'.
e P4 P’ obviously implies P+ P % P’ for all a € A and P’ ~ P'.

Hence P+ P ~ P.

c) P (QI R) ~ (Pl Q) I R: Choose p = {(P[[(QI R), (P Q) R|PQRE Proc}. pis a

strong bisimulation.

d) P || P # P: A counterexample is the process definition P = a.nil. The two induced LTS are as

follows:
a.nil || a.nil b a.nil
a
/ \ |o
nil || a.nil a.nil || nil b nil
a
a
nil || nil
Exercise 3 (3 points)

a) Problem: “race conditions” between external user actions and internal 7-steps

Intended:

w G(Open(@) [Unlocked(B) | K ey(@))
O new @(Closed(a)||Unlocked(b)|| K ey(&))
i
a

close

open
—New

(isLocked.Closed (@) + isUnlocked.Open(@))||Unlocked(b)|| K ey(é))
Open(@)|[Unlocked(b)|| K ey(&))

—>new

But:

new @((isLocked.Closed(@) + isUnlocked.Open(a))||Unlocked(b)| K ey(&))

pressed

— new &((isLocked.Closed(a@) + isUnlocked.Open(a))
|[Unlocked(b)|[activate. K ey(Z))
—new @((isLocked.Closed(d@) + isUnlocked.Open(a))
(b

b)) Key(c))
Pressed ow a((isLocked.Closed(@) + isUnlocked.Open(a))

-,

| (isOpen.alarm.Unlocked(b) + isClosed.Locked(b))||activate. K ey())

|(isOpen.alarm.Unlocked(b) + isClosed. Locked

= deadlock situation

b) Idea: Introduce an additional synchronization process

— —

Sync(d) = OPEN . open . ack Sync(d)+

user action jnternal action acknowledgement

CLOSE.close.ack.Sync(d)+
PRESS.pressed.ack.Sync(d)

ack has to be introduced in other processes of the system:

Door(a) = Open(ad)
Open(a) = i50pen.Open(a@) + close.ack.Closed(@) + open.ack.Open(a)
Closed(a) = isClosed.Closed(a)+

open.(isLocked.ack.Closed(@) + isUnlocked.ack.Open(a)) + close.ack.Closed(a)

Locker(b) = Unlocked(b)

-,

Unlocked(b) = isUnlocked.Unlocked(b)+
activate.(isOpen. ALARM .ack.Unlocked(b) + isClosed. Locked(b))

—.

Locked(b) — isLocked.Locked(b) + activate.ack.Unlocked(b)
Key(¢) = pressed.activate.Key(c)
System(€) = newd (Door ()| Locker(b||K ey(2)||Sync(d))

where d = open, close, ack, pressed, isOpen, isClosed, isLocked, isUnlocked, activate.

Exercise 4 (1+ 3 points)

P € Proc well terminating, if for every P —* P/,

>k){(z) P’% and }

iy d —
(i) P = P' ~ done.nil

a)
nil well terminating: trivial

Let Py, P, € Proc be well terminating.

a.Pi(a & {done,done}) w.t.:
Let a.Py =™ P (n>0)

Ifn>1:P =" P = (x)

P+ P, w.t.:

Let P, + P, —* P’

= P —* P or Py, —* P’

= (%)

newa P w.t.:

Let newa P, —* P’

= ex. Q' with P' = newd @’ and P, —* Q'
= (%) applies to Q'

= (%) applies to P’ (even if done € &)

Well-termination is not preserved by parallel composition:

P = done.nil -

but P||P done nil||done.nil done nil||nil

= done.nil||done.nil % done.nil

b)

Done = done.nil

P Seq@ = newd(P[done — d]||d.Q)

P Par @ = new dy, dy(P[done — di])||Q[done — da])||d1.d2. Done)

Seq, Par preserve well-termination:
Induction on the length of the computation

