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Exercise 1 (4 + 1 points)

a) We show that ρ = (Semn
0 (get, put), Sn(get, put))∪{(Semn

k (get, put), Si1(get, put)‖ . . . ‖Sin(get, put)) |
0 ≤ k ≤ n,

∑n
j=1 ij = k} is a strong bisimulation:
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This is the most general case (for k = 0, there are no put-transitions, and for k = n no get-
transitions). The states on the right-hand side actually represent all different states for which the
summation condition holds – they are equivalent with respect to ρ.

b) See Example 2.3 for the specifications of the sequential and parallel two-place buffer.
The corresponding LTSs are:
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Assuming B0 ∼ B′

0, it then follows that B1 ∼ B′

2. However, B′

2 has an outgoing τ -transition while
B1 does not, therefore B1 6∼ B′

2. From this it follows that the two LTSs are not strongly bisimilar.



Exercise 2 (4 points)

a) P + nil ∼ P :� P + nil
a
−→ P ′ implies P

a
−→ P ′ for all a ∈ A and clearly P ′ ∼ P ′.� P

a
−→ P ′ obviously implies P + nil

a
−→ P ′ for all a ∈ A and P ′ ∼ P ′.

Hence P + nil ∼ P .

b) P + P ∼ P :� P + P
a
−→ P ′ implies P

a
−→ P ′ for all a ∈ A and clearly P ′ ∼ P ′.� P

a
−→ P ′ obviously implies P + P

a
−→ P ′ for all a ∈ A and P ′ ∼ P ′.

Hence P + P ∼ P .

c) P || (Q || R) ∼ (P || Q) || R: Choose ρ = {(P || (Q || R), (P || Q) || R | P,Q,R ∈ Proc}. ρ is a
strong bisimulation.

d) P || P 6∼ P : A counterexample is the process definition P = a.nil. The two induced LTS are as
follows:
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Exercise 3 (3 points)

a) Problem: “race conditions” between external user actions and internal τ -steps

Intended:

new ~α(Open(~a)‖Unlocked(~b)‖Key(~c))

close
−→new ~α(Closed(~a)‖Unlocked(~b)‖Key(~c))
open
−→new ~α((isLocked.Closed(~a) + isUnlocked.Open(~a))‖Unlocked(~b)‖Key(~c))

τ
−→new ~α(Open(~a)‖Unlocked(~b)‖Key(~c))

−→ . . .

But:



new ~α((isLocked.Closed(~a) + isUnlocked.Open(~a))‖Unlocked(~b)‖Key(~c))

pressed
−→ new ~α((isLocked.Closed(~a) + isUnlocked.Open(~a))

‖Unlocked(~b)‖activate.Key(~c))
τ

−→new ~α((isLocked.Closed(~a) + isUnlocked.Open(~a))

‖(isOpen.alarm.Unlocked(~b) + isClosed.Locked(~b))‖Key(~c))

pressed
−→ new ~α((isLocked.Closed(~a) + isUnlocked.Open(~a))

‖(isOpen.alarm.Unlocked(~b) + isClosed.Locked(~b))‖activate.Key(~c))

⇒ deadlock situation

b) Idea: Introduce an additional synchronization process

Sync(~d) = OPEN
︸ ︷︷ ︸

user action

. open
︸︷︷︸

internal action

. ack
︸︷︷︸

acknowledgement

.Sync(~d)+

CLOSE.close.ack.Sync(~d)+

PRESS.pressed.ack.Sync(~d)

ack has to be introduced in other processes of the system:

Door(~a) = Open(~a)

Open(~a) = isOpen.Open(~a) + close.ack.Closed(~a) + open.ack.Open(~a)

Closed(~a) = isClosed.Closed(~a)+

open.(isLocked.ack.Closed(~a) + isUnlocked.ack.Open(~a)) + close.ack.Closed(~a)

Locker(~b) = Unlocked(~b)

Unlocked(~b) = isUnlocked.Unlocked(~b)+

activate.(isOpen.ALARM.ack.Unlocked(~b) + isClosed.Locked(~b))

Locked(~b) = isLocked.Locked(~b) + activate.ack.Unlocked(~b)

Key(~c) = pressed.activate.Key(~c)

System(~e) = new~d (Door(~a)‖Locker(~b‖Key(~c)‖Sync(~d))

where ~d = open, close, ack, pressed, isOpen, isClosed, isLocked, isUnlocked, activate.

Exercise 4 (1 + 3 points)

P ∈ Proc well terminating, if for every P →∗ P ′,

(∗)

{

(i) P ′ 6
done
−→ and

(ii) P ′ done
−→⇒ P ′ ∼ done.nil

}

a)

nil well terminating: trivial

Let P1, P2 ∈ Proc be well terminating.

α.P1(α 6∈ {done, done}) w.t.:
Let α.P1 →n P ′ (n ≥ 0)

If n = 0 : P ′ = α.P1
done,done
−−−−−−→6 ⇒ (∗)

If n ≥ 1 : P1 →n−1 P ′ ⇒ (∗)



P1 + P2 w.t.:
Let P1 + P2 →∗ P ′

⇒ P1 →∗ P ′ or P2 →∗ P ′

⇒ (∗)

new ~α P1 w.t.:
Let new ~α P1 →∗ P ′

⇒ ex. Q′ with P ′ = new ~α Q′ and P1 →∗ Q′

⇒ (∗) applies to Q′

⇒ (∗) applies to P ′ (even if done ∈ ~α)

Well-termination is not preserved by parallel composition:
P = done.nil

but P‖P
done
−→ nil‖done.nil

done
−→ nil‖nil

⇒ done.nil‖done.nil 6∼ done.nil

b)

Done = done.nil

P Seq Q = new d(P [done 7→ d]‖d.Q)

P Par Q = new d1, d2(P [done 7→ d1])‖Q[done 7→ d2])‖d1.d2.Done)

Seq, Par preserve well-termination:
Induction on the length of the computation


