
Software Modeling and Verification
Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
Priv.-Doz. Dr. T. Noll
T. Han, M. Neuhäußer

Modeling Concurrent and Probabilistic Systems

Winter Term 07/08

– Solution 4 –

Exercise 1 (6 points)

“Specification”: (note: infinitely many equations, thus not a valid CCS process definition)

Stackε(~a) = pusha.Stacka(~a) + pushb.Stackb(~a) + empty.Stackε(~a) + Done(done)

Stackxs(~a) = pusha.Stackaxs(~a) + pushb.Stackbxs(~a) + popx.Stacks(~a)

wherex ∈ {a, b}, s ∈ {a, b}∗, a = (pusha, pushb, popa, popb, empty, done)

Done(done) = done.nil

“Implementation”:

Stack(~a) = Pusha(pusha, done)Seq (Stack(~a)Seq (Popa(popa, done)Seq Stack(~a)))

+ Pushb(pushb, done)Seq (Stack(~a)Seq (Popb(popb, done)Seq Stack(~a)))

+ Done(done) where~a = (pusha, pushb, popa, popb, done)

Pushx(pushx, done) = pushx.Done(done) (x ∈ {a, b})

Popx(popx, done) = popx.Done(done) (x ∈ {a, b})

Example (according to our specification):

Stackε
pusha

−→ Stacka
pushb−→ Stackba

popb−→ Stacka
popa

−→ Stackε
done
−→ nil.

Implementation example:
Stack

·

Stack Seq Popa Seq Stack

·

Stack Seq Popb Seq Stack Seq Popa Seq Stack

·

·

Stack Seq Popa Seq Stack

·

·

Stack nil

pusha

τ

pushb

τ

τ

popb

τ

τ

popa

τ
done

Exercise 2 (4 points)

First, recall the definition of a (deterministic) Turing machine. A deterministic Turing machine is a tuple:

A = (Q,Σ,Γ, δ, q0,�, E)

where� Q is a finite set of states� Σ is the input alphabet� Γ ⊃ Σ is the working alphabet� δ : Q × Γ → Q × Γ × {L,N,R} is the transition function,� q0 is the initial state,� � ∈ Γ \ Σ is the blanc symbol and� E ⊆ Q is the set of final states.

Here, without loss of generality, we assume that Σ = Γ \ {�} and that δ has the form

δ : Q × Γ → Q × Σ × {L,N,R},

i.e. that the blanc symbol � can only be read and overwritten, but not written.

Now we provide a reduction from the problem whether a given Turing machine M on every of its com-
putations visits only finitely many configurations to the problem whether a given CCS process definition
induces a finite LTS.

We use the following idea to transform a deterministic Turing machine to a CCS process definition:� Each state of A is represented by a process identifier� A’s tape is split into two stacks: LStack and RStack .� The current position of the head is the top of stack LStack .

Intuitively, LStack contains the content of the tape up to (including) the current position of the head;
RStack contains the remaining tape contents. For x ∈ Γ, we let

Pid = {TM ,LStack (~b),RStack (~c)} ∪ {Control q(~a) | q ∈ Q} and

TM CCS = new~a (Control q0
(~a)‖LStack (~b)‖RStack (~c)) where

LStack(lpushx, lpopx, lempty) = Stack(lpushx, lpopx, lempty)

RStack (rpushx, rpopx, rempty) = Stack(rpushx, rpopx, rempty)

The transitions of A are represented in our CCS processes as follows:
Let q, q′ ∈ Q,x ∈ ({�} ∪ Σ) , a ∈ Σ and d ∈ {L,N,R}. For every transition

δ(q, x) = (q′, a, d)

of the deterministic Turing machine A, introduce a corresponding nondeterministic choice in the process
definition Control q that corresponds to state q of A as follows:

Control q(~a) = . . . + α.P +

Here, α and P reflect the semantics of A’s transition as follows:

α =

{

lpopx if x ∈ Σ

lempty if x = �

P =







lpusha.Control q′(~a) if d = N

rpusha.Control q′(~a) if d = L

lpusha.
(∑

b∈Σ
rpopb.lpushb.Control q′(~a) + rempty .lpush�.Control q′(~a)

)
if d = R

For a given Turing machine M, the problem whether every computation of M visits only finitely many
configurations is undecidable.

This completes our reduction as we now have: TM induces finite LTS ⇔ every computation of A visits
finitely many configurations.

Exercise 3 (4 points)

Recall the LTS of the two buffer implementations:

P1

P2

P3

in

inout

out

Q1

Q3

Q2

Q4

Q5

in
in

τ

out

inout

Specification: Implementation:

Apply the partition algorithm:

(1) Initial partition π = {S} = {{P1, P2, P3, Q1, . . . , Q5}}

(2,3) Successor blocks:

P P1 P2 P3 Q1 Q2 Q3 Q4 Q5

in(P) {S} {S} ∅ {S} {S} ∅ {S} ∅
out(P) ∅ {S} {S} ∅ ∅ ∅ {S} {S}

τ(P) ∅ ∅ ∅ ∅ ∅ {S} ∅ ∅

(4,5) Decomposition:

π = {{P1, Q1, Q2}
︸ ︷︷ ︸

B1

, {P2, Q4}
︸ ︷︷ ︸

B2

, {P3, Q5}
︸ ︷︷ ︸

B3

, {Q3}
︸ ︷︷ ︸

B4

}

(2,3) Successor blocks of B1:

P P1 Q1 Q2

in(P) {B2} {B4} {B4}
out(P) ∅ ∅ ∅

τ(P) ∅ ∅ ∅

(4,5) Decompose B1 into {P1} and {Q1, Q2}

⇒ P1 6∼ Q1

