Software Modeling and Verification Prof. Dr. Ir. J.-P. Katoen
Lehrstuhl fiir Informatik 2 Priv.-Doz. Dr. T. Noll
RWTH Aachen University T. Han, M. Neuh&ufler

Modeling Concurrent and Probabilistic Systems
Winter Term 07/08

— Solution 4 —

Exercise 1 (6 points)

“Specification”: (note: infinitely many equations, thus not a valid CCS process definition)

Stack.(@) = pushg.Stacky (@) + pushy.Stacky(d) + empty.Stack. (@) + Done(done)
Stackys(@) = pushg.Stackegs(@) + pushy.Stacky,s(@) + popg.Stacks(a)
wherex € {a,b}, s € {a,b}", a = (pushq, pushy, popa, popy, empty, done)
Done(done) = done.nil
“Implementation”:

Stack(d) = Pushg(pushg,done) Seq (Stack(@) Seq (Popg(popa,done) Seq Stack(a)))
Pushy(pushy, done) Seq (Stack(a) Seq (Popy(popy, done) Seq Stack(ad)))
Done(done) whered = (pushg, pushy, popg, popy, done)
Pushy(pushy,done) = pushy.Done(done) (x € {a,b})

Pop,(popy,done) = pop,.Done(done) (x € {a,b})

|
|

Example (according to our specification):

ha h o .
Stack. PR Stack, ™25 Stacky, PPy Stack, P28 Stack, done i

Implementation example:
Stack

{pushy,

\T
Stack Seq Pop, Seq Stack
< |pushy

Ve
Ve
Ve

/ \T
Stack S/éq Popy, Seq Stack Seq Pop, Seq Stack

| IT

N | Popy
AN
AN

\\ #T

Stack Seq\Popa Seq Stack

nil

Exercise 2 (4 points)
First, recall the definition of a (deterministic) Turing machine. A deterministic Turing machine is a tuple:
A - (Q7 27P7 57 q0, D7E)

where

e () is a finite set of states

e Y is the input alphabet

I"' O ¥ is the working alphabet

0:QxI'—QxT x{L,N,R} is the transition function,

qo is the initial state,
e JeI'\ X is the blanc symbol and

e £ C () is the set of final states.

Here, without loss of generality, we assume that X = I"\ {0} and that § has the form
§:QxT —QxXx{L, N,R},

i.e. that the blanc symbol [can only be read and overwritten, but not written.

Now we provide a reduction from the problem whether a given Turing machine M on every of its com-
putations visits only finitely many configurations to the problem whether a given CCS process definition
induces a finite LTS.

We use the following idea to transform a deterministic Turing machine to a CCS process definition:

e Each state of A is represented by a process identifier
e A’s tape is split into two stacks: LStack and RStack.

e The current position of the head is the top of stack LStack.

Intuitively, LStack contains the content of the tape up to (including) the current position of the head;
RStack contains the remaining tape contents. For = € I', we let

Pid = { TM, LStack(b), RStack(&)} U {Control,(a@) | ¢ € Q} and

—.

TM ccs = new @ (Control 4, (@)|| LStack (b)||RStack(€)) where
LStack(lpush,,, lpop,,., lempty) = Stack(Ilpush., lpop.., lempty)
RStack(rpush.,,, rpop,, rempty) = Stack(rpush.,,, rpop,, rempty)

The transitions of A are represented in our CCS processes as follows:
Let ¢,¢ € Q,z € {0} UX),a € X and d € {L, N, R}. For every transition

d(q,x) = (¢',a,d)

of the deterministic Turing machine A, introduce a corresponding nondeterministic choice in the process
definition Control, that corresponds to state ¢ of A as follows:

Controly(@) = ...+ a.P+....

Here, a and P reflect the semantics of A’s transition as follows:
lpop, ifzxeX
o =
lempty ifx =01

Ipush,,. Control y (@) ifd=N
P = q rpush,,.Control y (@) ifd=1L
Ipushg. (3 e, TPopy- Ipushy,. Controly (@) + rempty.lpushp. Controly (@)) ifd = R

For a given Turing machine M, the problem whether every computation of M visits only finitely many
configurations is undecidable.

This completes our reduction as we now have: TM induces finite LTS < every computation of A visits
finitely many configurations.

Exercise 3 (4 points)

Recall the LTS of the two buffer implementations:

Specification: Implementation:

out

out

Apply the partition algorithm:

(1) Initial partition 7 = {S} = {{P1, P2, P3,Q1,...,Q5}}
(2,3) Successor blocks:

Pl AL P P53 Q1 Q Qs Qi Qs
{Sy {sy 0 {S} {S}

in(P) 0 {st 0
out(P) | 0 {S} {S} 0 0 0 {S} {s}
P00 0 0 0 {S} 0 0

(4,5) Decomposition:
™= {{P1,Q1,Q2}, {2, Qu}, {5, Q5},{Q3}}
S—— —— N—— N~
B1 Bo B3 By
(2,3) Successor blocks of By:
P| P Q1 Q2
in(P) | {B2} {Ba} {Ba}
out(P) 0 0 0
7(P) 0 0 0

(4,5) Decompose By into {P;} and {Q1,Q2}

= P41

