

Modeling Concurrent and Probabilistic Systems

Winter Term 07/08

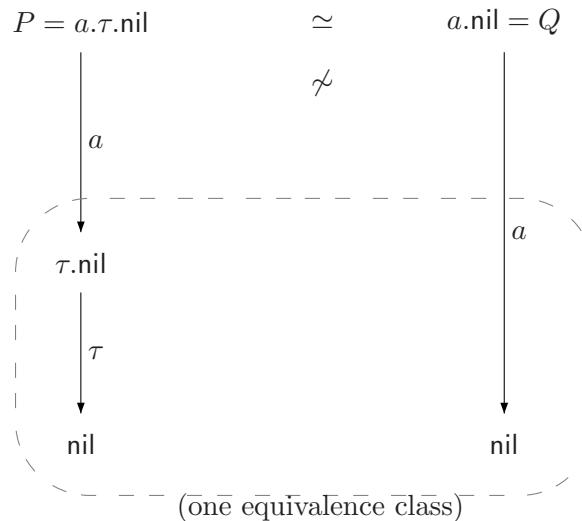
– Solution 5 –

Exercise 4.4

(4 points)

$$\begin{array}{c} P \sim Q \Rightarrow P \simeq Q \Rightarrow P \approx Q \\ \not\equiv \qquad \not\equiv \\ \text{(a)} \qquad \qquad \text{(b)} \end{array}$$

a) $P \simeq Q$ and $P \not\simeq Q$:



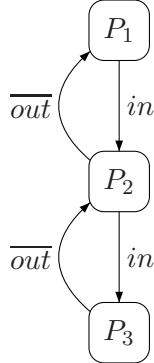
b) $P \approx Q$ and $P \not\approx Q$:



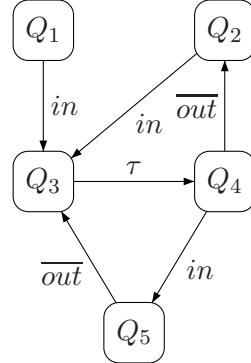
Exercise 1

(4 points)

Specification:



Implementation:



Partitioning algorithm:

(1) Initial partition $\pi = \{S\} = \{P_1, P_2, P_3, Q_1, \dots, Q_5\}$

(2,3) Successor blocks:

$$\alpha^*(P) = \{B \in \pi \mid \exists P' \in B \text{ with } P \xrightarrow{\hat{\alpha}} P'\}$$

P	P ₁	P ₂	P ₃	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅
$in^*(P)$	{S}	{S}	\emptyset	{S}	{S}	{S}	{S}	\emptyset
$out^*(P)$	\emptyset	{S}	{S}	\emptyset	\emptyset	{S}	{S}	{S}
$\tau^*(P)$	{S}							

(4,5) Decomposition: $\pi = \underbrace{\{P_1, Q_1, Q_2\}}_{B_1}, \underbrace{\{P_2, Q_3, Q_4\}}_{B_2}, \underbrace{\{P_3, Q_5\}}_{B_3}$

(2, 3) Successor blocks:

P	P ₁	Q ₁	Q ₂	P ₂	Q ₃	Q ₄	P ₃	Q ₅
$in^*(P)$	{B ₂ }	{B ₂ }	{B ₂ }	{B ₃ }	{B ₃ }	{B ₃ }	\emptyset	\emptyset
$out^*(P)$	\emptyset	\emptyset	\emptyset	{B ₁ }	{B ₁ }	{B ₁ }	{B ₂ }	{B ₂ }
$\tau^*(P)$	{B ₁ }	{B ₁ }	{B ₁ }	{B ₂ }	{B ₂ }	{B ₂ }	{B ₃ }	{B ₃ }

(4,5) no change $\Rightarrow \hat{\pi} = \{B_1, B_2, B_3\}$

By correctness Theorem 9.1: $P_1, Q_1 \in B_1 \Rightarrow P_1 \approx Q_1$

Observational congruence:

Theorem 9.2: $P_1 \simeq Q_1 \Leftrightarrow \alpha^+(P_1) = \alpha^+(Q_1) \forall \alpha \in Act$
where $\alpha^+(P) = \{C \in \hat{\Pi} \mid \exists P' \in C \text{ with } P \xrightarrow{\alpha} P'\}$

Computation of the α^+ -successor blocks:

P	P ₁	Q ₁
$in^+(P)$	{B ₂ }	{B ₂ }
$out^+(P)$	\emptyset	\emptyset
$\tau^+(P)$	\emptyset	\emptyset

Hence $P_1 \simeq Q_1$.

Exercise 2

(6 points)

We have to show:

$$P \approx Q \iff P \simeq Q \text{ or } P \simeq \tau.Q \text{ or } \tau.P \simeq Q.$$

Proof:

\Leftarrow If $P \simeq Q$, then $P \approx Q$ by Corollary 10.4.

If $P \simeq \tau.Q$, then $P \approx \tau.Q$ by Corollary 10.4, and hence $P \approx Q$ by Lemma 9.5.

If $\tau.P \simeq Q$: analogously

\Rightarrow Let $P \approx Q$. We distinguish three cases:

a) $P \xrightarrow{\tau} P' \approx Q$ for some $P' \in \text{Proc}$: here $P \simeq \tau.Q$ since

- if $P \xrightarrow{\tau} P'$, then $P \approx Q$ implies that there ex. Q' such that $Q \xrightarrow{\varepsilon} Q'$ and $P' \approx Q'$. Hence $\tau.Q \xrightarrow{\tau} Q'$ with $P' \approx Q$ q.e.d.
- if $P \xrightarrow{\alpha} P'$ with $\alpha \neq \tau$, then $P \approx Q$ implies that there ex. Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \approx Q'$. Hence $\tau.Q \xrightarrow{\alpha} Q'$ with $P' \approx Q'$ q.e.d.
- if $\tau.Q \xrightarrow{\tau} Q$, then $P \xrightarrow{\tau} P' \approx Q$ by above assumption q.e.d.

b) $Q \xrightarrow{\tau} Q' \approx P$ for some $Q' \in \text{Proc}$: here $\tau.P \simeq Q$ follows analogously to the previous case.

c) otherwise: here $P \simeq Q$ since

- if $P \xrightarrow{\tau} P'$, then $P \approx Q$ implies that there ex. Q' such that $Q \xrightarrow{\varepsilon} Q'$ and $P' \approx Q'$. Since $P' \not\approx Q$ (otherwise case (a) would apply), also $Q' \not\approx Q$. Hence $Q \xrightarrow{\tau} Q'$ q.e.d.
- if $P \xrightarrow{\alpha} P'$ with $\alpha \neq \tau$, then $P \approx Q$ implies that there ex. Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \approx Q'$ q.e.d.
- for $Q \xrightarrow{\tau} Q'$ and $Q \xrightarrow{\alpha} Q'$, similar arguments apply

Exercise 3

(4 points)

We know from Exercise 4.2: Turing machine $\mathcal{A} \mapsto$ process definition $P_{\mathcal{A}}$ such that the LTS of $P_{\mathcal{A}}$ represents the configurations of \mathcal{A} .

Concretely: State $q \in Q \mapsto$ process identifier Control_q .

Now: if $q \in F$ (final state), then extend Control_q by $\text{Control}_q = \dots + \overline{\text{done}}.\text{nil}$.

Result: \mathcal{A} halts in final state (undecidable)

$$\Leftrightarrow P_{\mathcal{A}} \xrightarrow{\tau^*} \overline{\text{done}}.\text{nil}$$

$$\Leftrightarrow P_{\mathcal{A}} \approx \overline{\text{done}}.\text{nil}$$

\Rightarrow if we decided that weak bisimulation problem, we could decide the halting problem for TMs.