
Software Modeling and Verification
Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
Priv.-Doz. Dr. T. Noll
T. Han, M. Neuhäußer

Modeling Concurrent and Probabilistic Systems

Winter Term 07/08

– Solution 5 –

Exercise 4.4 (4 points)

P ∼ Q ⇒ P ≃ Q ⇒ P ≈ Q

6⇐ 6⇐
(a) (b)

a) P ≃ Q and P 6∼ Q:

P = a.τ.nil

τ.nil

nil

a

τ

≃

6∼

a.nil = Q

nil

a

(one equivalence class)

b) P ≈ Q and P 6≃ Q:

P = τ.nil

nil

τ

≈

6≃

nil = Q



Exercise 1 (4 points)

P1

P2

P3

in

inout

out

Q1

Q3

Q2

Q4

Q5

in
in

τ

out

inout

Specification: Implementation:

Partitioning algorithm:

(1) Initial partition π = {S} = {P1, P2, P3, Q1, . . . , Q5}

(2,3) Successor blocks:

α∗(P ) = {B ∈ π | ∃P ′ ∈ B with P
α̂

=⇒ P ′}

P P1 P2 P3 Q1 Q2 Q3 Q4 Q5

in∗(P ) {S} {S} ∅ {S} {S} {S} {S} ∅

out
∗
(P ) ∅ {S} {S} ∅ ∅ {S} {S} {S}

τ∗(P ) {S} {S} {S} {S} {S} {S} {S} {S}

(4,5) Decomposition: π = {{P1, Q1, Q2}
︸ ︷︷ ︸

B1

, {P2, Q3, Q4}
︸ ︷︷ ︸

B2

, {P3, Q5}
︸ ︷︷ ︸

B3

}

(2, 3) Successor blocks:

P P1 Q1 Q2 P2 Q3 Q4 P3 Q5

in∗(P ) {B2} {B2} {B2} {B3} {B3} {B3} ∅ ∅
out

∗
(P ) ∅ ∅ ∅ {B1} {B1} {B1} {B2} {B2}

τ∗(P ) {B1} {B1} {B1} {B2} {B2} {B2} {B3} {B3}

(4,5) no change ⇒ π̂ = {B1, B2, B3}

By correctness Theorem 9.1: P1, Q1 ∈ B1 ⇒ P1 ≈ Q1

Observational congruence:
Theorem 9.2: P1 ≃ Q1 ⇔ α+(P1) = α+(Q1)∀α ∈ Act

where α+(P ) = {C ∈ Π̂ | ∃P ′ ∈ C with P
α

=⇒ P ′}

Computation of the α+-successor blocks:

P P1 Q1

in+(P ) {B2} {B2}
out+(P ) ∅ ∅

τ+(P ) ∅ ∅

Hence P1 ≃ Q1.



Exercise 2 (6 points)

We have to show:

P ≈ Q ⇐⇒ P ≃ Q or P ≃ τ.Q or τ.P ≃ Q.

Proof:

⇐= If P ≃ Q, then P ≈ Q by Corollary 10.4.
If P ≃ τ.Q, then P ≈ τ.Q by Corollary 10.4, and hence P ≈ Q by Lemma 9.5.
If τ.P ≃ Q: analogously

=⇒ Let P ≈ Q. We distinguish three cases:

a) P
τ
−→ P ′ ≈ Q for some P ′ ∈ Proc: here P ≃ τ.Q since� if P

τ
−→ P ′, then P ≈ Q implies that there ex. Q′ such that Q

ε
=⇒ Q′ and P ′ ≈ Q′. Hence

τ.Q
τ
=⇒ Q′ with P ′ ≈ Q q.e.d.� if P

α
−→ P ′ with α 6= τ , then P ≈ Q implies that there ex. Q′ such that Q

α
=⇒ Q′ and

P ′ ≈ Q′. Hence τ.Q
α
=⇒ Q′ with P ′ ≈ Q′ q.e.d.� if τ.Q

τ
−→ Q, then P

τ
−→ P ′ ≈ Q by above assumption q.e.d.

b) Q
τ
−→ Q′ ≈ P for some Q′ ∈ Proc: here τ.P ≃ Q follows analogously to the previous case.

c) otherwise: here P ≃ Q since� if P
τ
−→ P ′, then P ≈ Q implies that there ex. Q′ such that Q

ε
=⇒ Q′ and P ′ ≈ Q′. Since

P ′ 6≈ Q (otherwise case (a) would apply), also Q′ 6≈ Q. Hence Q
τ
=⇒ Q′ q.e.d.� if P

α
−→ P ′ with α 6= τ , then P ≈ Q implies that there ex. Q′ such that Q

α
=⇒ Q′ and

P ′ ≈ Q′ q.e.d.� for Q
τ
−→ Q′ and Q

α
−→ Q′, similar arguments apply

Exercise 3 (4 points)

We know from Exercise 4.2: Turing machine A 7→ process definition PA such that the LTS of PA represents
the configurations of A.

Concretely: State q ∈ Q 7→ process identifier Controlq.

Now: if q ∈ F (final state), then extend Controlq by Controlq = . . . + done.nil.

Result: A halts in final state (undecidable)

⇔ PA

τ
→

∗
.

done
−→ nil

⇔ PA ≈ done.nil

⇒ if we decided that weak bisimulation problem, we could decide the halting problem for TMs.


