

Modeling Concurrent and Probabilistic Systems

Winter Term 07/08

– Solution 6 –

Exercise 1

(4 points)

a) $P \not\approx R$:

Assume there exists a weak bisimulation ρ with $P\rho R$.

Then $R \xrightarrow{\tau} R_2$ and hence there is P' such that $P \xrightarrow{\hat{\tau}} P'$.

Again, the only possible choice for P' is P (i.e. zero τ -steps).

By definition $P\rho R$ implies $P'\rho R_2$. However, $P' \xrightarrow{a} \text{nil}$ whereas $R_2 \not\xrightarrow{\hat{a}}$.

\Rightarrow Contradiction.

b) $Q \not\approx R$:

Assume there exists a weak bisimulation ρ with $Q\rho R$.

Then $R \xrightarrow{\tau} R_1$ and hence there exists Q' such that $Q \xrightarrow{\hat{\tau}} Q'$.

There are two choices for Q' :

(a) Let $Q' = Q$ (i.e. zero τ -steps). Then $R_1\rho Q$ is required by the definition of ρ .

Now $Q \xrightarrow{\tau} Q_1$. Hence there ex. R'_1 such that $R_1 \xrightarrow{\hat{\tau}} R'_1$.

Only possible choice: $R'_1 = R_1$. Now $R_1\rho Q_1$. (*)

But $R_1 \xrightarrow{a} \text{nil}$ whereas $Q_1 \not\xrightarrow{\hat{a}}$ (the reverse holds for b).

\Rightarrow Contradiction.

(b) Let $Q' = Q_1$. Then $R_1\rho Q_1$ must be valid. \Rightarrow Contradiction (see (*)).

Exercise 2

(6 points)

Let $P_1 \approx P_2$. Then there exists a weak bisimulation ρ with $P_1\rho P_2$.

a) To show: $a.P_1 \approx a.P_2$ for all $a \in \text{Act}$.

Let $\rho' = \rho \cup \{(a.P_1, a.P_2) \mid a \in \text{Act}\}$.

It remains to show that ρ' is a weak bisimulation:

Obviously, ρ is a weak bisimulation. Further, for $a \in \text{Act}$,

- $a.P_1 \xrightarrow{a} P_1$ and $a.P_2 \xrightarrow{\hat{a}} P_2$ and $P_1\rho' P_2$
- $a.P_2 \xrightarrow{a} P_2$ and $a.P_1 \xrightarrow{\hat{a}} P_1$ and $P_1\rho' P_2$

$\Rightarrow \rho'$ is a weak bisimulation.

b) To show: $P_1 \parallel Q \approx P_2 \parallel Q$

$\rho' = \rho \cup \{(P_1 \parallel Q, P_2 \parallel Q) \mid P_1, P_2, Q \in \text{Proc} \text{ and } P_1 \approx P_2\}$

By definition, ρ is a weak bisimulation. Hence, for ρ' , we have to show:

- $P_1 \parallel Q \xrightarrow{a} R'_1 \Rightarrow \exists R'_2 \text{ such that } P_2 \parallel Q \xrightarrow{\hat{a}} R'_2 \text{ and } R'_1\rho' R'_2$
- $P_2 \parallel Q \xrightarrow{a} R'_2 \Rightarrow \exists R'_1 \text{ such that } P_1 \parallel Q \xrightarrow{\hat{a}} R_1 \text{ and } R'_1\rho' R'_2$

Due to symmetry, we only consider one direction: Therefore distinguish three cases:

(a) $P_1 \xrightarrow{a} P'_1$. Then $P_1 \parallel Q \xrightarrow{a} P'_1 \parallel Q$. As $P_1 \rho P_2$, there exists P'_2 such that $P_2 \xrightarrow{\hat{a}} P'_2$ and $P'_1 \rho P'_2$. Hence $P_2 \parallel Q \xrightarrow{\hat{a}} P'_2 \parallel Q$. Then, by definition, $(P'_1 \parallel Q) \rho' (P'_2 \parallel Q)$.

(b) $Q \xrightarrow{a} Q'$. Then $P_1 \parallel Q \xrightarrow{a} P_1 \parallel Q'$ and also $P_2 \parallel Q \xrightarrow{\hat{a}} P_2 \parallel Q'$. As $P_1 \rho P_2$ and by definition of ρ' , $(P_1 \parallel Q') \rho' (P_2 \parallel Q')$.

(c) $P_1 \parallel Q \xrightarrow{\tau} P'_1 \parallel Q'$ where $P_1 \xrightarrow{a} P'_1$ and $Q \xrightarrow{\bar{a}} Q'$ for $a \in N \cup \bar{N}$.
 Then, as $P_1 \rho P_2$ there ex. P'_2 such that $P_2 \xrightarrow{\hat{a}} P'_2$ and $P'_1 \rho P'_2$.
 Therefore we have $P_2 \xrightarrow{\tau} R_1 \xrightarrow{a} R_2 \xrightarrow{\tau} P'_2$.
 Thus $P_2 \parallel Q \xrightarrow{\tau} R_1 \parallel Q \xrightarrow{\tau} R_2 \parallel Q' \xrightarrow{\tau} P'_2 \parallel Q'$.
 Therefore $P_2 \parallel Q \xrightarrow{\hat{\tau}} P'_2 \parallel Q'$. Further $(P'_1 \parallel Q') \rho' (P'_2 \parallel Q')$ for $P'_1 \approx P'_2$.

c) To show: $\text{new } a \text{ } P_1 \approx \text{new } a \text{ } P_2$ for all $a \in N$.
 Let $\rho' = \{(\text{new } a \text{ } P_1, \text{new } a \text{ } P_2) \mid a \in N, P_1 \approx P_2\}$.
 Let $\text{new } a \text{ } P_1 \xrightarrow{\beta} \text{new } a \text{ } P'_1$ for $\beta \in \text{Act}$.
 Then $P_1 \xrightarrow{\beta} P'_1$. Since $P_1 \rho P_2$ for some weak bisimulation ρ , there ex. P'_2 such that $P_2 \xrightarrow{\hat{\beta}} P'_2$, i.e. $P_2 \xrightarrow{\tau} R_1 \xrightarrow{\beta} R_2 \xrightarrow{\tau} P'_2$ and $P'_1 \rho P'_2$.
 Thus $\text{new } a \text{ } P_2 \xrightarrow{\tau} \text{new } a \text{ } R_1 \xrightarrow{\beta} \text{new } a \text{ } R_2 \xrightarrow{\tau} \text{new } a \text{ } P'_2$.
 Hence $\text{new } a \text{ } P_2 \xrightarrow{\hat{\beta}} \text{new } a \text{ } P'_2$ and $(\text{new } a \text{ } P'_1, \text{new } a \text{ } P'_2) \in \rho'$.

Exercise 3

(4 points)

a) $P \parallel \tau.Q \approx P \parallel Q$
 Obviously, $Q \approx \tau.Q$. Then by 6.2b) it follows that $P \parallel Q \approx P \parallel \tau.Q$.

b) $P \parallel \tau.Q \not\approx P \parallel Q$
 Assume $a.\text{nil} \parallel \tau.b.\text{nil} \simeq a.\text{nil} \parallel b.\text{nil}$.
 Then $a.\text{nil} \parallel \tau.b.\text{nil} \xrightarrow{\tau} a.\text{nil} \parallel b.\text{nil}$.
 But $a.\text{nil} \parallel b.\text{nil} \not\Rightarrow$ (since $a.\text{nil} \parallel b.\text{nil} \xrightarrow{\tau}$ means $a.\text{nil} \parallel b.\text{nil} (\xrightarrow{\tau}^*) \xrightarrow{\tau} (\xrightarrow{\tau}^*)$)
 As $a.\text{nil} \parallel b.\text{nil}$ cannot execute a τ -step, $\not\approx$.

c) $P \parallel \tau.Q \simeq \tau.(P \parallel Q)$ Three cases:

- $P \xrightarrow{a} P'$. Then $P \parallel \tau.Q \xrightarrow{a} P' \parallel \tau.Q$. Then $\tau.(P \parallel Q) \xrightarrow{\tau} P \parallel Q \xrightarrow{a} P' \parallel Q$.
 Therefore $\tau.(P \parallel Q) \xrightarrow{a} P' \parallel Q$.
 Obviously (by part (a)), $P' \parallel \tau.Q \approx P' \parallel Q$.
- $P \parallel \tau.Q \xrightarrow{\tau} P \parallel Q$. Then $\tau.(P \parallel Q) \xrightarrow{\tau} P \parallel Q$ and $P \parallel Q \approx P \parallel Q$.
- $\tau.(P \parallel Q) \xrightarrow{\tau} P \parallel Q$. But $P \parallel \tau.Q \xrightarrow{\tau} P \parallel Q$ (with $\tau.Q \xrightarrow{\tau} Q$) and $P \parallel Q \approx P \parallel Q$.