
Software Modeling and Verification
Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
Priv.-Doz. Dr. T. Noll
T. Han, M. Neuhäußer

Modeling Concurrent and Probabilistic Systems

Winter Term 07/08

– Solution 7 –

Exercise 1 (3 + 3 + 1 + 1 points)

We modify the CCS specification of the ABP to model lossy channels. If a message or an acknowledgement
is lost, a timeout leads to a retransmission.

a) The following process definition introduces timeouts in the alternating bit protocol to model lossy
channels:

Sender = new {timeout , start , stop}
(
Sender0 || Timer

)

Sender b =
∑

d∈D

acceptd.Senddb

Senddb = senddb.start .Waitdb

Waitdb = ack b.(stop.Sender1−b + timeout .Sender1−b)

+ ack1−b.(stop.Senddb + timeout .Senddb)

+ timeout .Senddb

Receiver = new {timeout , start , stop}
(
Receiver ′0 || Timer

)

Receiver ′0 =
∑

d∈D

transd0.Replyd0

+
∑

d∈D

transd1.reply1.start .Receiver 0

Receiver b =
∑

d∈D

transdb.(timeout .Replydb + stop.Replydb)

+
∑

d∈D

transd(1−b).(timeout .reply1−b.start .Receiver b + stop.reply1−b.start .Receiver b)

+ timeout .reply1−b.start .Receiver b

Replydb = deliverd.reply b.start .Receiver 1−b

Trans =
∑

d∈D
b∈{0,1}

senddb.
(
transdb.Trans
︸ ︷︷ ︸

msg success

+ Trans
︸ ︷︷ ︸

msg loss

)

Ack =
∑

b∈{0,1}

replyb.
(
ack b.Ack
︸ ︷︷ ︸

ack success

+ Ack
︸︷︷︸

ack loss

)

Timer = start .(timeout .Timer + stop.Timer)

ABP(accept , deliver) = newL
(
Sender || Trans || Ack || Receiver

)

where L = {senddb, transdb, replyb, ack b | d ∈ D, b ∈ {0, 1}}.

b) LTS of Sender || Timer :

S0 || T

Sndd0 || T

start.Waitd0 || T

Waitd0 || T ′

stop.Sndd0 + to.Sndd0 || T ′ stop.S1 + to.S1 || T ′

S1 || T

Sndd1 || T

start.Waitd1 || T

Waitd1 || T ′

stop.Sndd1 + to.Sndd1 || T ′stop.S0 + to.S0 || T ′

acceptd

sendd0

τ

ack1 ack0

τ

acceptd

sendd1

τ

ack0ack1

τ
τ τ

τ
τ

Steps of partitioning algorithm: see last page!
Reduced LTS (w.r.t. weak bisimilarity):

S0 || T

Snd0 || T

Waitd0 || T ′

S1 || T

Snd1 || T

Waitd1 || T ′

acceptd

sendd0

ack0

acceptd

sendd1

ack1

τ

τ

ack1

ack0

c) LTS of Receiver || Timer :

R′
0 || T

Rplyd0 || T Rplyd1 || T

reply0.start.R1 || T reply1.start.R0 || T

start.R1 || T start.R0 || T

R1 || T ′ R0 || T ′

(to.reply0.start.R1 + stop.reply0.start.R1) || T ′

to.Rplyd1 + stop.Rplyd1 || T ′ to.Rplyd0 + stop.Rplyd0 || T ′

(to.reply1.start.R0 + stop.reply1.start.R0) || T ′

transd0

deliverd deliverd

reply0 reply1

τ τ

transd0

τ

τ (timeout)

transd1

ττ

transd0
transd1

τ

τ (timeout)

transd1

Reduced LTS (w.r.t. weak bisimilarity):

R′
0 || T

Rplyd0 || T Rplyd1 || T

reply0.start.R1 || T reply1.start.R0 || T

R1 || T ′ R0 || T ′

transd0

transd1

deliverd deliverd

reply0 reply1

transd1
transd0

transd0 ττ transd1

d) Weak bisimilarity is not a congruence. In general, if P1 ≈ P2 and Q1 ≈ Q2, P1 + Q1 6≈ P2 + Q2.
However, weak bisimilarity is preserved under parallel composition and restriction. As these are the
only operators we use to compose the ABP process, this is a valid approach.

Exercise 2 (6 points)

Unrealistic: direct, error-free connection between Receiver and Sender (action e).
Transition system (S = Sender, R = Receiver, M = Medium; without new . . .):

Protocol

S′ || M || R

(d.S′ + e.S) || (c.M + d.M) || R

(d.S′ + e.S) || M || f.e.R

(d.S′ + e.S) || M || e.RS || M || R

a
a

τ (c)

f

τ (e)

τ (b) τ (d)

≈ B

≈ f.B

One-place buffer: B
a

⇄

f

f .B

⇒ Protocol ≈ B

Moreover Protocol and B can only execute a

⇒ Protocol ≃ B (because neither Protocol nor B can execute a τ -action)

Partitioning algorithm, first iteration:

P S0 || T Sndd0 || T start.Wd0 || T Wd0 || T ′ (stop.S1 (stop.Sndd0 S1 || T Sndd1 || T start.Wd1 || T Wd1 || T ′ (stop.S0 (stop.Sndd1

+to.S1) || T ′ +to.Sndd0) || T ′ +to.S0) || T ′ +to.Sndd1) || T ′

accept∗ {S} ∅ ∅ ∅ {S} ∅ {S} ∅ ∅ ∅ {S} ∅
send∗

d0
∅ {S} {S} {S} ∅ {S} ∅ ∅ ∅ ∅ ∅ ∅

send∗
d1

∅ ∅ ∅ ∅ ∅ ∅ ∅ {S} {S} {S} ∅ {S}
ack∗

0
∅ ∅ {S} {S} ∅ ∅ ∅ ∅ {S} {S} ∅ ∅

ack∗

1
∅ ∅ {S} {S} ∅ ∅ ∅ ∅ {S} {S} ∅ ∅

τ∗ {S} {S} {S} {S} {S} {S} {S} {S} {S} {S} {S} {S}
Block B1 B2 B3 B3 B1 B2 B1 B4 B5 B5 B1 B4

Second iteration:
P S0 || T stop.S0 + to.S0 || S1 || T stop.S1 + to.S1 || Sndd0 || T stop.Sndd0 + to.Sndd0 start.waitd0 || T Wd0 ||

(to.T + stop.T) (to.T + stop.T) || to.T + stop.T (to.T + stop.T)
accept∗ {B2} {B2} {B4} {B4} ∅ ∅ ∅ ∅

send∗
d0

∅ ∅ ∅ ∅ {B3, B2} {B3, B2} {B2, B3} {B2, B3}
send∗

d1
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

ack∗

0
∅ ∅ ∅ ∅ ∅ ∅ {B1} {B1,2} {B1} {B1,2}

ack∗

1
∅ ∅ ∅ ∅ ∅ ∅ {B2} {B2}

τ∗ {B1} {B1,1} {B1} {B1,1} {B1} {B1,2} {B1} {B1,2} {B2} {B2} {B3, B2} {B3, B2}

P Sndd1 || T stop.Sndd1 + to.Sndd1 start.waitd1 || T Wd1 ||
|| (to.T + stop.T) (to.T + stop.T)

accept∗ ∅ ∅ ∅ ∅
send∗

d0
∅ ∅ ∅ ∅

send∗
d1

{B5, B4} {B5, B4} {B5, B4} {B5, B4}
ack∗

0
∅ ∅ {B4} {B4}

ack∗

1
∅ ∅ {B1} {B1,1} {B1} {B1,1}

τ∗ {B4} {B4} {B5, B4} {B5, B4}

⇒ split B1 into B1,1 and B1,2, all other blocks remain unchanged.
Result: Weak bisimulation quotient with six states.

