
Modeling Concurrent and Probabilistic Systems

Lecture 11: Extensions of the Alternating-Bit Protocol

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

Summer Semester 2009

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

Outline

1 Repetition: The Alternating-Bit Protocol

2 Duplication of Messages

3 Handling Duplication of Messages

4 Concluding Remarks

5 Outlook: Modeling Mobile Concurrent Systems

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 2

Repetition: The Alternating-Bit Protocol

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

The overall system is given by

ABP(
−−−−→
accept ,

−−−−→
deliver) = new L (Sender ‖ Trans ‖ Ack ‖ Receiver)

where

L := {senddb, transdb, reply b, ack b | db ∈ F} ∪ {trans⊥, ack⊥}

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 3

Repetition: Modeling of Channels

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Trans transmits frames of the following form:

F := {db | d ∈ D, b ∈ {0, 1}} (finite)

It detects transmission errors and reports it to Receiver :

Trans =
∑

f∈F

sendf .(transf .Trans
︸ ︷︷ ︸

successful

+ trans⊥.Trans
︸ ︷︷ ︸

error

)

Ack behaves like Trans but transmits only control bits:

Ack =
∑

b∈{0,1}

replyb.(ack b.Ack
︸ ︷︷ ︸

successful

+ ack⊥.Ack
︸ ︷︷ ︸

error

)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 4

Repetition: Implementation of Sender

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Sender accepts d ∈ D via acceptd and repeatedly sends frames of the
form d0 over Trans until it receives the acknowledgment 0 over Ack .
For the next data item, control bit 1 is used and so on
(=⇒ “Alternating-Bit Protocol”).

Formally, for b ∈ {0, 1} and d ∈ D:

Sender = Sender0

Sender b =
∑

d∈D

acceptd.Senddb

Senddb = senddb.Waitdb

Waitdb = ack b.Sender 1−b
︸ ︷︷ ︸

successful

+ ack1−b.Senddb + ack⊥.Senddb
︸ ︷︷ ︸

error
Modeling Concurrent and Probabilistic Systems Summer Semester 2009 5

Repetition: Implementation of Receiver

Receiver gets frames of the form db or ⊥. In the first case, if b has the
expected value, d is forwarded via deliverd, and b is returned via Ack .
Otherwise the transmission is re-initiated by returning the “wrong”
control bit 1 − b to Sender .

Formally, for b ∈ {0, 1} and d ∈ D:

Receiver = Receiver0

Receiver b =
∑

d∈D

transdb.Replydb

+
∑

d∈D

transd(1−b).reply1−b.Receiver b

+ trans⊥.reply1−bReceiver b

Replydb = deliverd.reply b.Receiver 1−b

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 6

Repetition: Correctness of ABP I

Theorem

ABP(
−−−−→
accept ,

−−−−→
deliver) ≃ Buffer(

−−−−→
accept ,

−−−−→
deliver)

Remark: because of internal τ -steps in ABP , ABP ∼ Buffer cannot
hold.

Proof.

1 Construct transition system of ABP(
−−−−→
accept ,

−−−−→
deliver)

(next slide; S = Sender , W = Wait , T = Trans , A = Ack ,
R = Receiver/Reply , d, e ∈ D; without restrictions)

2 Show that ABP(
−−−−→
accept ,

−−−−→
deliver) ≈ Buffer(

−−−−→
accept ,

−−−−→
deliver)

3 ABP(
−−−−→
accept ,

−−−−→
deliver) 6

τ
−→ and Buffer(

−−−−→
accept ,

−−−−→
deliver) 6

τ
−→

=⇒ ABP(
−−−−→
accept ,

−−−−→
deliver) ≃ Buffer(

−−−−→
accept ,

−−−−→
deliver)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 7

Repetition: Correctness of ABP II

Proof (continued).

� � � ?

?

?

6

6

6

?�

6

�

6
-

?

-
6

-

?�

ABP

S0 ‖ T ‖ A ‖ R0

S1 ‖ T ‖ A ‖ R1

Wd0 ‖ T ‖ A ‖ Rd0

We1 ‖ T ‖ A ‖ Re1

@
@@Racceptd

acceptd

τ〈sendd0〉 τ〈transd0〉

accepteτ〈sende1〉τ〈transe1〉

deliverd

τ〈reply0〉

delivere

τ〈reply1〉

τ〈reply1〉

τ〈transd0〉

τ〈sendd0〉

τ〈reply0〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈transe1〉

τ〈sende1〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack0〉τ〈ack0〉

τ〈ack1〉 τ〈ack1〉

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 8

Repetition: Correctness of ABP II

Proof (continued).

� � � ?

?

?

6

6

6

?�

6

�

6
-

?

-
6

-

?�

ABP ≈ Buffer

Buffer ≈

S0 ‖ T ‖ A ‖ R0

Buffer ≈

S1 ‖ T ‖ A ‖ R1

Bufferd ≈

Wd0 ‖ T ‖ A ‖ Rd0

Buffere ≈

We1 ‖ T ‖ A ‖ Re1

@
@@Racceptd

acceptd

τ〈sendd0〉 τ〈transd0〉

accepteτ〈sende1〉τ〈transe1〉

deliverd

τ〈reply0〉

delivere

τ〈reply1〉

τ〈reply1〉

τ〈transd0〉

τ〈sendd0〉

τ〈reply0〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈transe1〉

τ〈sende1〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack0〉τ〈ack0〉

τ〈ack1〉 τ〈ack1〉

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 8

Outline

1 Repetition: The Alternating-Bit Protocol

2 Duplication of Messages

3 Handling Duplication of Messages

4 Concluding Remarks

5 Outlook: Modeling Mobile Concurrent Systems

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 9

Duplication of Messages I

Duplication of messages can be modelled as follows:

Trans =
∑

f∈F

sendf .(transf .Trans
︸ ︷︷ ︸

successful

+

trans⊥.Trans
︸ ︷︷ ︸

error

+

transf .transf .Trans
︸ ︷︷ ︸

duplication

)

Ack =
∑

b∈{0,1}

replyb.(ack b.Ack
︸ ︷︷ ︸

successful

+ ack⊥.Ack
︸ ︷︷ ︸

error

+ ack b.ack b.Ack
︸ ︷︷ ︸

duplication

)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 10

Duplication of Messages I

Duplication of messages can be modelled as follows:

Trans =
∑

f∈F

sendf .(transf .Trans
︸ ︷︷ ︸

successful

+

trans⊥.Trans
︸ ︷︷ ︸

error

+

transf .transf .Trans
︸ ︷︷ ︸

duplication

)

Ack =
∑

b∈{0,1}

replyb.(ack b.Ack
︸ ︷︷ ︸

successful

+ ack⊥.Ack
︸ ︷︷ ︸

error

+ ack b.ack b.Ack
︸ ︷︷ ︸

duplication

)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 10

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Sender 0 ‖ Trans ‖ Ack ‖ Receiver 0

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Sender b =
∑

d∈D

acceptd.Senddb

Sender 0 ‖ Trans ‖ Ack ‖ Receiver 0

↓ acceptd

Sendd0 ‖ Trans ‖ Ack ‖ Receiver 0

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Senddb = senddb.Waitdb

Trans =
∑

f∈F

sendf .(transf .Trans + trans⊥.Trans + transf .transf .Trans)

Sendd0 ‖ Trans ‖ Ack ‖ Receiver 0

↓ τ〈sendd0〉

Waitd0 ‖ (. . . + transd0.transd0.Trans) ‖ Ack ‖ Receiver 0

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Receiver b =
∑

d∈D

transdb.Replydb + . . .

Trans =
∑

f∈F

sendf .(transf .Trans + trans⊥.Trans + transf .transf .Trans)

Waitd0 ‖ (. . . + transd0.transd0.Trans) ‖ Ack ‖ Receiver 0

↓ τ〈transd0〉

Waitd0 ‖ transd0.Trans ‖ Ack ‖ Replyd0

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Replydb = deliverd.reply b.Receiver 1−b

Waitd0 ‖ transd0.Trans ‖ Ack ‖ Replyd0

↓ deliverd

Waitd0 ‖ transd0.Trans ‖ Ack ‖ reply0.Receiver1

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Replydb = deliverd.reply b.Receiver 1−b

Ack =
∑

b∈{0,1}

reply b.(ack b.Ack + ack⊥.Ack + ack b.ack b.Ack)

Waitd0 ‖ transd0.Trans ‖ Ack ‖ reply0.Receiver1

↓ τ〈reply0〉

Waitd0 ‖ transd0.Trans ‖ (. . . + ack0.ack0.Ack) ‖ Receiver 1

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Waitdb = ack b.Sender 1−b + ack1−b.Senddb + ack⊥.Senddb

Ack =
∑

b∈{0,1}

reply b.(ack b.Ack + ack⊥.Ack + ack b.ack b.Ack)

Waitd0 ‖ transd0.Trans ‖ (. . . + ack0.ack0.Ack) ‖ Receiver 1

↓ τ〈ack0〉

Sender 1 ‖ transd0.Trans ‖ ack0.Ack ‖ Receiver 1

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Receiver b = . . . +
∑

d∈D

transd(1−b).reply1−b.Receiver b

Trans =
∑

f∈F

sendf .(transf .Trans + trans⊥.Trans + transf .transf .Trans)

Sender 1 ‖ transd0.Trans ‖ ack0.Ack ‖ Receiver 1

↓ τ〈transd0〉

Sender1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver 1

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Sender b =
∑

d∈D

acceptd.Senddb

Sender1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver 1

↓ accept e

Sende1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver1

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Senddb = senddb.Waitdb

Trans =
∑

f∈F

sendf .(transf .Trans + trans⊥.Trans + transf .transf .Trans)

Sende1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver1

↓ τ〈send e1〉

Waite1 ‖ (. . . + transe1.trans e1.Trans) ‖ ack0.Ack ‖ reply0.Receiver 1

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Waitdb = ack b.Sender 1−b + ack1−b.Senddb + ack⊥.Senddb

Ack =
∑

b∈{0,1}

reply b.(ack b.Ack + ack⊥.Ack + ack b.ack b.Ack)

Waite1 ‖ (. . . + transe1.trans e1.Trans) ‖ ack0.Ack ‖ reply0.Receiver 1

↓ τ〈ack0〉

Sende1 ‖ (. . . + transe1.transe1.Trans) ‖ Ack ‖ reply0.Receiver1

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Receiver b = . . . +
∑

d∈D

transd(1−b).reply1−b.Receiver b

Ack =
∑

b∈{0,1}

reply b.(ack b.Ack + ack⊥.Ack + ack b.ack b.Ack)

Sende1 ‖ (. . . + trans e1.transe1.Trans) ‖ Ack ‖ reply0.Receiver 1

↓ τ〈reply0〉

Sende1 ‖ (. . . + transe1.trans e1.Trans) ‖ (. . . + ack0.ack0.Ack) ‖ Receiver1

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Receiver b =
∑

d∈D

transdb.Replydb + . . .

Trans =
∑

f∈F

sendf .(transf .Trans + trans⊥.Trans + transf .transf .Trans)

Sende1 ‖ (. . . + transe1.trans e1.Trans) ‖ (. . . + ack0.ack0.Ack) ‖ Receiver1

↓ τ〈trans e1〉

Sende1 ‖ transe1.Trans ‖ (. . . + ack0.ack0.Ack) ‖ Replye1

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Replydb = deliverd.reply b.Receiver 1−b

Sende1 ‖ transe1.Trans ‖ (. . . + ack0.ack0.Ack) ‖ Reply e1

↓ delivere

Sende1 ‖ transe1.Trans ‖ (. . . + ack0.ack0.Ack) ‖ reply1.Receiver0

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages II

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Sende1 ‖ transe1.Trans ‖ (. . . + ack0.ack0.Ack) ‖ reply1.Receiver0

↓

?

Deadlock =⇒ ABP cannot handle this

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Outline

1 Repetition: The Alternating-Bit Protocol

2 Duplication of Messages

3 Handling Duplication of Messages

4 Concluding Remarks

5 Outlook: Modeling Mobile Concurrent Systems

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 12

Handling Duplication of Messages

Idea: allow Sender and Receiver to transmit ⊥ frames:

Receiver
reply

⊥−→ : message not received

Sender
send⊥−→ : acknowledgment not received

Allows to distinguish corrupted and duplicated frames

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 13

Modified Implementation of Sender

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

For b ∈ {0, 1} and d ∈ D:

Sender = Sender0

Sender b =
∑

d∈D

acceptd.Senddb

Senddb = senddb.Waitdb

Waitdb = ack b.Sender 1−b
︸ ︷︷ ︸

successful

+ ack⊥.Senddb
︸ ︷︷ ︸

error, restart

+ ack1−b.Waitdb
︸ ︷︷ ︸

duplication, ignore

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 14

Modified Implementation of Sender

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

For b ∈ {0, 1} and d ∈ D:

Sender = Sender0

Sender b =
∑

d∈D

acceptd.Senddb

Senddb = senddb.Waitdb

Waitdb = ack b.Sender 1−b
︸ ︷︷ ︸

successful

+ ack⊥.Senddb
︸ ︷︷ ︸

error, restart

+ ack1−b.Waitdb
︸ ︷︷ ︸

duplication, ignore

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 14

Modified Implementation of Sender

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

For b ∈ {0, 1} and d ∈ D:

Sender = Sender0

Sender b =
∑

d∈D

acceptd.Senddb

Senddb = senddb.Waitdb

Waitdb = ack b.Sender 1−b
︸ ︷︷ ︸

successful

+ ack⊥.Senddb
︸ ︷︷ ︸

error, restart

+ ack1−b.Waitdb
︸ ︷︷ ︸

duplication, ignore

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 14

Modified Implementation of Sender

�

�
	

�

�
	

�

�
	

�

�
	

���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

For b ∈ {0, 1} and d ∈ D:

Sender = Sender0

Sender b =
∑

d∈D

acceptd.Senddb

Senddb = senddb.Waitdb

Waitdb = ack b.Sender 1−b
︸ ︷︷ ︸

successful

+ ack⊥.Senddb
︸ ︷︷ ︸

error, restart

+ ack1−b.Waitdb
︸ ︷︷ ︸

duplication, ignore

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 14

Modified Implementation of Receiver

For b ∈ {0, 1} and d ∈ D:

Receiver = Receiver 0

Receiver b =
∑

d∈D

transdb.Replydb

+ trans⊥.reply⊥.Receiver b

+
∑

d∈D

transd(1−b).Receiver b

Replydb = deliverd.reply b.Receiver 1−b

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 15

Modified Implementation of Receiver

For b ∈ {0, 1} and d ∈ D:

Receiver = Receiver 0

Receiver b =
∑

d∈D

transdb.Replydb

+ trans⊥.reply⊥.Receiver b

+
∑

d∈D

transd(1−b).Receiver b

Replydb = deliverd.reply b.Receiver 1−b

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 15

Modified Implementation of Receiver

For b ∈ {0, 1} and d ∈ D:

Receiver = Receiver 0

Receiver b =
∑

d∈D

transdb.Replydb

+ trans⊥.reply⊥.Receiver b

+
∑

d∈D

transd(1−b).Receiver b

Replydb = deliverd.reply b.Receiver 1−b

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 15

The Overall System

ABP(
−−−−→
accept ,

−−−−→
deliver)

= new L (Sender ‖ Trans ‖ Ack ‖ Receiver)

Sender = Sender0

Sender b =
∑

d∈D acceptd.Senddb

Senddb = senddb.Waitdb

Waitdb = ack b.Sender 1−b + ack⊥.Senddb + ack1−b.Waitdb

Receiver = Receiver0

Receiver b =
∑

d∈D transdb.Replydb

+ trans⊥.reply⊥.Receiver b

+
∑

d∈D transd(1−b).Receiver b

Replydb = deliverd.replyb.Receiver1−b

Trans =
∑

f∈F sendf .(transf .Trans + trans⊥.Trans +
transf .transf .Trans)

Ack =
∑

b∈{0,1} reply b.(ack b.Ack + ack⊥.Ack + ack b.ack b.Ack)

where L := {senddb, transdb, reply b, ack b | db ∈ F}
∪ {send⊥, trans⊥, reply⊥, ack⊥}

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 16

Correctness of the Modification

Again:

Theorem 11.1

ABP(
−−−−→
accept ,

−−−−→
deliver) ≃ Buffer(

−−−−→
accept ,

−−−−→
deliver)

Proof.

on the board
(S = Sender/Send , W = Wait , T = Trans , A = Ack ,
R = Receiver/Reply , d, e ∈ D; without restrictions)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 17

Correctness of the Modification

Again:

Theorem 11.1

ABP(
−−−−→
accept ,

−−−−→
deliver) ≃ Buffer(

−−−−→
accept ,

−−−−→
deliver)

Proof.

on the board
(S = Sender/Send , W = Wait , T = Trans , A = Ack ,
R = Receiver/Reply , d, e ∈ D; without restrictions)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 17

Outline

1 Repetition: The Alternating-Bit Protocol

2 Duplication of Messages

3 Handling Duplication of Messages

4 Concluding Remarks

5 Outlook: Modeling Mobile Concurrent Systems

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 18

Concluding Remarks

Handling loss of messages: by introducing timeouts

Validity of correctness proof (τ -cycles in ABP , but not in Buffer)?

Simplest case:

A(a) = τ.A + a.nil ≃ B(a) = τ.a.nil

Even more: every LTS containing τ -cycles is observationally
congruent to one without τ -cycles

There are notions of equivalence which distinguish divergent
(τ -cycles) and convergent (no τ -cycles) processes

But:

they are more complicated than standard bisimulation
(weak) bisimulation allows the proportion between the speeds of
processes to vary unboundedly – why not infinite?
if convergence is essential, it can be assured separately

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 19

Concluding Remarks

Handling loss of messages: by introducing timeouts

Validity of correctness proof (τ -cycles in ABP , but not in Buffer)?

Simplest case:

A(a) = τ.A + a.nil ≃ B(a) = τ.a.nil

Even more: every LTS containing τ -cycles is observationally
congruent to one without τ -cycles

There are notions of equivalence which distinguish divergent
(τ -cycles) and convergent (no τ -cycles) processes

But:

they are more complicated than standard bisimulation
(weak) bisimulation allows the proportion between the speeds of
processes to vary unboundedly – why not infinite?
if convergence is essential, it can be assured separately

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 19

Concluding Remarks

Handling loss of messages: by introducing timeouts

Validity of correctness proof (τ -cycles in ABP , but not in Buffer)?

Simplest case:

A(a) = τ.A + a.nil ≃ B(a) = τ.a.nil

Even more: every LTS containing τ -cycles is observationally
congruent to one without τ -cycles

There are notions of equivalence which distinguish divergent
(τ -cycles) and convergent (no τ -cycles) processes

But:

they are more complicated than standard bisimulation
(weak) bisimulation allows the proportion between the speeds of
processes to vary unboundedly – why not infinite?
if convergence is essential, it can be assured separately

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 19

Concluding Remarks

Handling loss of messages: by introducing timeouts

Validity of correctness proof (τ -cycles in ABP , but not in Buffer)?

Simplest case:

A(a) = τ.A + a.nil ≃ B(a) = τ.a.nil

Even more: every LTS containing τ -cycles is observationally
congruent to one without τ -cycles

There are notions of equivalence which distinguish divergent
(τ -cycles) and convergent (no τ -cycles) processes

But:

they are more complicated than standard bisimulation
(weak) bisimulation allows the proportion between the speeds of
processes to vary unboundedly – why not infinite?
if convergence is essential, it can be assured separately

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 19

Outline

1 Repetition: The Alternating-Bit Protocol

2 Duplication of Messages

3 Handling Duplication of Messages

4 Concluding Remarks

5 Outlook: Modeling Mobile Concurrent Systems

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 20

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q ∈ Prc want to communicate, then both must syntactically refer to
the same action name

=⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

=⇒ lack of mobility

Goal: develop calculus in the spirit of CCS which supports mobility

=⇒ π-calculus

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 21

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q ∈ Prc want to communicate, then both must syntactically refer to
the same action name

=⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

=⇒ lack of mobility

Goal: develop calculus in the spirit of CCS which supports mobility

=⇒ π-calculus

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 21

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q ∈ Prc want to communicate, then both must syntactically refer to
the same action name

=⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

=⇒ lack of mobility

Goal: develop calculus in the spirit of CCS which supports mobility

=⇒ π-calculus

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 21

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q ∈ Prc want to communicate, then both must syntactically refer to
the same action name

=⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

=⇒ lack of mobility

Goal: develop calculus in the spirit of CCS which supports mobility

=⇒ π-calculus

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 21

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

Server S controls access to printer P

Client C wishes to use P

In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :

initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′

︸ ︷︷ ︸

S

‖ b(c).c〈d〉.C ′

︸ ︷︷ ︸

C

‖ a(e).P ′

︸ ︷︷ ︸

P
τ

−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′

τ
−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 22

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

Server S controls access to printer P

Client C wishes to use P

In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :

initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′

︸ ︷︷ ︸

S

‖ b(c).c〈d〉.C ′

︸ ︷︷ ︸

C

‖ a(e).P ′

︸ ︷︷ ︸

P
τ

−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′

τ
−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 22

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

Server S controls access to printer P

Client C wishes to use P

In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :

initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′

︸ ︷︷ ︸

S

‖ b(c).c〈d〉.C ′

︸ ︷︷ ︸

C

‖ a(e).P ′

︸ ︷︷ ︸

P
τ

−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′

τ
−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 22

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

Server S controls access to printer P

Client C wishes to use P

In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :

initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′

︸ ︷︷ ︸

S

‖ b(c).c〈d〉.C ′

︸ ︷︷ ︸

C

‖ a(e).P ′

︸ ︷︷ ︸

P
τ

−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′

τ
−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 22

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

Server S controls access to printer P

Client C wishes to use P

In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :

initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′

︸ ︷︷ ︸

S

‖ b(c).c〈d〉.C ′

︸ ︷︷ ︸

C

‖ a(e).P ′

︸ ︷︷ ︸

P
τ

−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′

τ
−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 22

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

Server S controls access to printer P

Client C wishes to use P

In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :

initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′

︸ ︷︷ ︸

S

‖ b(c).c〈d〉.C ′

︸ ︷︷ ︸

C

‖ a(e).P ′

︸ ︷︷ ︸

P
τ

−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′

τ
−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 22

Mobility in Concurrent Systems III

Example 11.2 (Dynamic access to resources; continued)

Different rôles of action name a:

in interaction between S and C:
object transferred from S to C
in interaction between C and P :
name of communication link

Intuitively, names represent access rights:

a: for P
b: for S
d: for data to be printed

If a is only way to access P
=⇒ P “moves” from S to C

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 23

Mobility in Concurrent Systems III

Example 11.2 (Dynamic access to resources; continued)

Different rôles of action name a:

in interaction between S and C:
object transferred from S to C
in interaction between C and P :
name of communication link

Intuitively, names represent access rights:

a: for P
b: for S
d: for data to be printed

If a is only way to access P
=⇒ P “moves” from S to C

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 23

Mobility in Concurrent Systems III

Example 11.2 (Dynamic access to resources; continued)

Different rôles of action name a:

in interaction between S and C:
object transferred from S to C
in interaction between C and P :
name of communication link

Intuitively, names represent access rights:

a: for P
b: for S
d: for data to be printed

If a is only way to access P
=⇒ P “moves” from S to C

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 23

	Repetition: The Alternating-Bit Protocol
	Duplication of Messages
	Handling Duplication of Messages
	Concluding Remarks
	Outlook: Modeling Mobile Concurrent Systems

