Modeling Concurrent and Probabilistic Systems

Lecture 11: Extensions of the Alternating-Bit Protocol

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

Summer Semester 2009

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

@ Repetition: The Alternating-Bit Protocol

Rm Modeling Concurrent and Probabilisti Summer Semester

Repetition: The Alternating-Bit Protocol

accept . deliver

o~ areply

The overall system is given by
ABP(accept, deliver) = new L (Sender || Trans || Ack || Receiver)
where

L := {send g, trans gy, replyy, acky | db € F} U {trans, ,ack }

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Modeling of Channels

accept . deliver
- -

o~ aoply

G
o Trans transmits frames of the following form:
F:={db|de D,be{0,1}} (finite)
It detects transmission errors and reports it to Receiver:

Trans = Z send ¢.(trans . Trans + trans | . Trans)
—_ Y—m ——

fer successful error

o Ack behaves like Trans but transmits only control bits:

Ack = Z replyy.(acky. Ack + ack . Ack)

be{0,1} successful error

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Implementation of Sender

W wﬁs

accept i
ack 4{;}@

Ack

Sender accepts d € D via accept,; and repeatedly sends frames of the
form dO over Trans until it receives the acknowledgment 0 over Ack.
For the next data item, control bit 1 is used and so on

(= “Alternating-Bit Protocol”).

Formally, for b € {0,1} and d € D:

Sender = Senderg
Sender, = Z accept g.Send gp
deD
Senddb = deb Waz’tdb
Waitg, = ackp.Senderi_y+ acki_p.Sendgy + ack | .Sendgy,

successful error

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Implementation of Receiver

Receiver gets frames of the form db or L. In the first case, if b has the
expected value, d is forwarded via delivery, and b is returned via Ack.
Otherwise the transmission is re-initiated by returning the “wrong”
control bit 1 — b to Sender.

Formally, for b € {0,1} and d € D:

Receiver = Receivery
Receiver, = Ztmnsdb.Replydb
deD
+ Z tmnsd(l_b).replyl_b.Receiverb
deD

+ trans) .reply,_,Recetvery

Replyy, = deliverq.reply,. Receiveri_y

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Correctness of ABP 1

ABP(accept, deliver) ~ Buffer(accept, deliver)

Remark: because of internal 7-steps in ABP, ABP ~ Buffer cannot
hold.

Proof.

|
|

@ Construct transition system of ABP(accept, deliver)
(next slide; S = Sender, W = Wait, T = Trans, A = Ack,
R = Receiver/Reply, d,e € D; without restrictions)
© Show that ABP(accept, deliver) ~ Buffer(accept, deliver)
© ABP(accept, deliver) /— and Buffer(accept, deliver) /—
-, s ——
= ABP(accept, deliver) ~ Buffer(accept, deliver)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Correctness of ABP 11

Proof (continued).

ABP
\a\cceptd
SO || Ip ” A ” ROA acceptd T(Sendd0> T(tT‘anSd()) WdO ” T ” A ” RdO
T{ack) T (trans,)
T{ack1) 7{ack1) delivery
r{ack,) 7(reply) T(trans
4 T(transqo
7(reply1) (sende1) T(sendgp) i (replyo)
r{transe1) T{ack_)
-~ [V —
b (trans,) 7(replyo)
delivere ’ {acko) T {acko)
T(trans) lack,)
Wer | T || A || Rey <lranse) | rlsender) V. _acceple g, |7 A | Ry

Modeling Concurrent and Probabilistic Systems

Summer Semester 2009

Repetition: Correctness of ABP 11

Proof (continued).

ABP =~

\a\cceptd
accepty T{sendgg)

Buffer ~

Buffer

Buffer; =

So | Tl All R

T({transqg) Wao | T || All Rao

T{ack) T (trans,)
T{acki) 7(acki) delivery
r{ack,) 7(reply) T(trans
4 T(transqo
7(reply1) (sende1) T(sendgp) i (replyo)
r{transe1) T{ack_)
-~ [V —
b (trans,) 7(replyo)
delivere {acko) T {acko)
T(trans)
Buffer, ~ m{ack) Buffer ~
Wer | T || A || Rey <lranse) | rlsender) V. _acceple tg, |7 4| Ry

Modeling Concurrent and Probabilistic Systems

Summer Semester 2009

© Duplication of Messages

Rm Modeling Concurrent and Probabilisti 1 Summer Semester

Duplication of Messages 1

Duplication of messages can be modelled as follows:

Trans = Z send y.(trans . Trans +
———
feF successful

trans | . Trans +
N————

error
trans s.trans . Trans)

duplication

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 1

Duplication of messages can be modelled as follows:

Trans = Z send y.(trans . Trans +
———
feF successful

trans | . Trans +
N————

error
trans s.trans . Trans)

duplication
Ack = Z replyy.(acky. Ack + ack | . Ack + acky.acky. Ack)
———
be{0,1} successful error duplication

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009 10

Duplication of Messages 11

Trans

W rans
accept iver
TR~ eply

Ack

Now the ABP behaves as follows (without restriction):

Senderq || Trans || Ack || Receiverg

Rm Modeling Concurrent and Probabilistic Systems Summer Semester

Duplication of Messages 11

accept . deliver
-

o~ areply

@y

Now the ABP behaves as follows (without restriction):

Sendery = Z accept ;.Send gy
deD

Senderq || Trans || Ack || Receiverg

1 accept,

Send g || Trans || Ack || Receiverg

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 11

se}i/v \@23
accept .
_p» deliver
Ack

Now the ABP behaves as follows (without restriction):
Senddb = S(inddb. Waitdb

Trans = Z send y.(trans ¢. Trans + trans | . Trans + trans s.trans 5. Trans)
fer
Send gy || Trans || Ack || Receiverg
| 7(sendqp)
Waitgo || (... + transqg.transqo. Trans) || Ack || Receiver

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 11

se/nd/ wﬁs
TR~

accept X
weery deliver
A{ply

Ack

Now the ABP behaves as follows (without restriction):

Receiver, = Z transqy. Reply g + - . .
deD
Trans = Z send y.(trans ¢. Trans +trans | . Trans + trans ;.trans ¢. Trans)
fer

Waitqo || (... + transgg.transqo. Trans) || Ack || Receiver

| T (transq)

Waitqo || transqo. Trans || Ack || Reply 40

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 11

Trans

se}i/v \@23
TR~

accept X
_p» deliver
A{ply

Ack

Now the ABP behaves as follows (without restriction):

Reply g, = deliver 4.reply,. Recetvery_y

Waitqo || transqo. Trans || Ack || Reply 4o
| delivery

Waitqo || transqo. Trans || Ack || replyq. Receivery

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 11

accept . deliver
- -

o~ areply

@

Now the ABP behaves as follows (without restriction):
Reply g, = deliverg.reply,,. Receiveri_y

Ack = Z replyy.(acky. Ack + ack . Ack + acky.acky. Ack)
be{0,1}
Waitqo || transqo. Trans || Ack || reply,.Receivery
| 7(reply,)
Waitqo || transqo. Trans || (... + acko.acko.Ack) || Receiver;

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 11

se}i/v Ws
accept . deliver
- -

o~ areply

@

Now the ABP behaves as follows (without restriction):
Wait g, = acky.Sender1_p + acki_p.Sendgy, + ack | .Send gy

Ack = Z replyy.(acky. Ack 4+ ack . Ack + acky.acky. Ack)
be{0,1}
Waitqo || transqo. Trans || (... + ackg.acko.Ack) || Receivery
| 7(acko)

Sendery || transqo. Trans || acko.Ack || Receiver;

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 11

W rans
accept iver
TR~ ety

Ack

Now the ABP behaves as follows (without restriction):

Receivery, = ...+ Z trans j(1—p)-reply, _y,. Receivery
deD
Trans = Z send y.(trans . Trans + trans | . Trans 4 trans y.trans ;. Trans)
fer

Sendery || transqo. Trans || acko.Ack || Receiver;

| 7(transqo)

Sendery || Trans || acko.Ack || replyy. Receiver;

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 11

W wﬁs
TR~

accept iver

Ack

Now the ABP behaves as follows (without restriction):

Sender, = Z accept ;.Send gy
deD

Sendery || Trans || acko.Ack || replyy. Receivery

| accept,

Sendcy || Trans || acko.Ack || replyq.Receivery

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 11

sy/v Ws

en
accept iver

Ack

Now the ABP behaves as follows (without restriction):
Send g, = send g,. Wait g

Trans = Z send y.(trans ¢. Trans 4 trans | . Trans + trans g.trans y. Trans)
fer

Sendcy || Trans || acko.Ack || reply,.Receivery
| 7(sendc1)

Waiter || (... + transer.transer. Trans) || acko.Ack || replyy. Receiver;

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 11

se}i/v \@23
accept X
_p» deliver
Ack

Now the ABP behaves as follows (without restriction):
Wait g, = acky.Sender1_p + acki_y.Sendgy, + ack | .Send gy

Ack = Z replyy.(acky. Ack + ack . Ack + acky.acky,. Ack)
be{0,1}
Waiter || (... + transer.transer. Trans) || acko.Ack || replyy. Receiver;
| 7(ackg)

Sendey || (... + transer.transer. Trans) || Ack || replyq. Receivery

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages 11

ot~

trans

. deliver
(Receiver | ——

4{ply

accept
— | Sender

Ack

Now the ABP behaves as follows (without restriction):

Recewery = ... + Z trans g1—p)-reply, . Receivery
deD
Ack = Z reply,.(acky. Ack + ack) .Ack + acky.acky. Ack)
be{0,1}

Sendey || (... + transer.transer. Trans) || Ack || reply,.Receivery
| m(replyq)

Sendey || (... + transer.transer. Trans) || (... + ackg.acky.Ack) || Receiver

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages 11

W rans
accept iver
TR~ ety

Ack

Now the ABP behaves as follows (without restriction):

Receivery, = Z trans g, Reply g, + . . .
deD
Trans = Z send y.(trans . Trans + trans | . Trans 4 trans y.trans ¢. Trans)
fer
Sendey || (... + transer.transer. Trans) || (... + ackg.acko.Ack) || Receiver
| 7(trans.1)

Sendey || transer. Trans || (... + ackg.acko.Ack) || Reply,,

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Duplication of Messages 11

Trans

accept . deliver

ToE e~ aToply

G

Now the ABP behaves as follows (without restriction):

Reply g, = deliver g.reply,. Receivery_y

Sendey || transer. Trans || (... + ackg.acko.Ack) || Reply,,
| deliver,

Sendcy || transer. Trans || (... + ackg.acko.Ack) || reply, . Receiverg

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Duplication of Messages 11

W rans
accept iver
TR~ ety

Ack

Now the ABP behaves as follows (without restriction):

Sendcy || transer. Trans || (... + acko.acko.Ack) || reply, . Receivery

!

?

Deadlock = ABP cannot handle this

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

© Handling Duplication of Messages

Rm Modeling Concurrent and Probabilisti Summer Semester

Handling Duplication of Messages

o Idea: allow Sender and Receiver to transmit 1 frames:
. reply | .
o Receiver — : message not received

send .
o Sender "==": acknowledgment not received

o Allows to distinguish corrupted and duplicated frames

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Modified Implementation of Sender

accept .
_p» deliver

Ack

For b € {0,1} and d € D:

Sender = Senderg

Rm Modeling Concurrent and Probabilistic Systems Summer Semester

Modified Implementation of Sender

accept . deliver
- -

o~ areply

Ack
For b € {0,1} and d € D:
Sender = Senderg
Sender, = Z accept g.Send gy
deD

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Modified Implementation of Sender

accept . deliver
- -

o~ areply

Ack
For b € {0,1} and d € D:
Sender = Senderg
Sender, = Z accept g.Send gy
deD
Senddb = senddb. Waitdb

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Modified Implementation of Sender

se}i/v Ws
Ack
For b € {0,1} and d € D:
Sender = Senderg
Sender, = g accept g.Send gy
deD
Senddb = senddb. Waitdb
Waitgy, = ackyp.Senderi_y+ ack | .Sendg, + ackq_y. Wait g
successful error, restart duplication, ignore

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Modified Implementation of Receiver

For b € {0,1} and d € D:

Recetver = Receiverg

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Modified Implementation of Receiver

For b € {0,1} and d € D:

Recetver = Receiverg
Receivery, = Z trans . Reply g,
deD

+ trans) .reply | . Receivery,

+ Z trans g1 —p)- Receivery
deD

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Modified Implementation of Receiver

For b € {0,1} and d € D:

Recetver = Receiverg
Receivery, = Z trans . Reply g,
deD

+ trans) .reply | . Receivery,

+ Z trans g1 —p)- Receivery
deD

Replyy, = deliverg.reply,.Receiveri_y

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

The Overall System

ABP(accept, deliver)
= new L (Sender || Trans || Ack || Receiver)

Sender = Sender
Sendery, =) cp accepty.Send gy

Senddb = senddb. Waz’tdb

Waitg, = acky.Senderi_y + ack | .Sendg, + acki_p. Wait g

Receiver = Receiver
Receivery, =) ;o trans g, Reply 4,
+ trans_ .reply | . Receivery
+ Y _gep trans g y)- Receivery,

Reply g, = deliverg.reply,. Receivery_y

Trans = 3 ;e sendy.(frans y. Trans + trans . Trans +
trans ¢.trans s. Trans)
Ack = Y e 0.1y TPl (acky. Ack + ack L. Ack + acky.acky. Ack)
where L := {send g, transa, reply,, acky | db € F'}
U {send,trans, reply |, ack,}

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 16

Correctness of the Modification

Again:

ABP (accept, deliver) ~ Buffer(accept, deliver)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Correctness of the Modification

Again:

ABP (accept, deliver) ~ Buffer(accept, deliver)

on the board
(S = Sender/Send, W = Wait, T = Trans, A = Ack,
R = Receiver/Reply, d,e € D; without restrictions)]

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 17

@ Concluding Remarks

Rm Modeling Concurrent and Probabilistic S Summer Semester

Concluding Remarks

o Handling loss of messages: by introducing timeouts

Rm Modeling Concurrent and Probabilisti Summer Semester

Concluding Remarks

o Handling loss of messages: by introducing timeouts

e Validity of correctness proof (7-cycles in ABP, but not in Buffer)?

Simplest case:
A(a) =17.A+anil =~ B(a)=T.anil

Even more: every LTS containing 7-cycles is observationally
congruent to one without 7-cycles

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009 19

Concluding Remarks

o Handling loss of messages: by introducing timeouts

e Validity of correctness proof (7-cycles in ABP, but not in Buffer)?

Simplest case:
A(a) =17.A+anil =~ B(a)=T.anil

Even more: every LTS containing 7-cycles is observationally
congruent to one without 7-cycles

@ There are notions of equivalence which distinguish divergent
(T-cycles) and convergent (no 7-cycles) processes

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Concluding Remarks

o Handling loss of messages: by introducing timeouts

e Validity of correctness proof (7-cycles in ABP, but not in Buffer)?

Simplest case:
A(a) =17.A+anil =~ B(a)=T.anil

Even more: every LTS containing 7-cycles is observationally
congruent to one without 7-cycles

@ There are notions of equivalence which distinguish divergent
(T-cycles) and convergent (no 7-cycles) processes
o But:
o they are more complicated than standard bisimulation
o (weak) bisimulation allows the proportion between the speeds of
processes to vary unboundedly — why not infinite?
e if convergence is essential, it can be assured separately

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 19

© Outlook: Modeling Mobile Concurrent Systems

Rm Modeling Concurrent and Probabilisti Summer Semester

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q € Prc want to communicate, then both must syntactically refer to
the same action name

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009 21

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q € Prc want to communicate, then both must syntactically refer to
the same action name

= every potential communication partner known beforehand,
no dynamic passing of communication links

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009 21

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q € Prc want to communicate, then both must syntactically refer to
the same action name

= every potential communication partner known beforehand,
no dynamic passing of communication links

= lack of mobility

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009 21

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q € Prc want to communicate, then both must syntactically refer to
the same action name

= every potential communication partner known beforehand,
no dynamic passing of communication links

= lack of mobility

Goal: develop calculus in the spirit of CCS which supports mobility

— m-calculus

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009 21

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

@ Server S controls access to printer P
@ Client C' wishes to use P

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

@ Server S controls access to printer P
@ Client C' wishes to use P

o In CCS: P and C must share some action name a
—> C could access P without being granted it by S

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

©

Server S controls access to printer P
Client C' wishes to use P

In CCS: P and C must share some action name a
—> C could access P without being granted it by S

In m-calculus :

©

©

©

¢ initially only S has access to P (using link a)
¢ using another link b, C' can request access to P

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

]

Server S controls access to printer P
Client C' wishes to use P

In CCS: P and C must share some action name a
—> C could access P without being granted it by S

©

©

In m-calculus :

©

¢ initially only S has access to P (using link a)
¢ using another link b, C' can request access to P

o Formally:
_ , B , , e link to P
b{a).S" || b(c).€(d).C" || a(e).P
~—— “——— ~—— o b: link between S and C

S C P
c: “placeholder” for a

©

©

d: data to be printed

©

e: “placeholder” for d

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

@ Server S controls access to printer P

o Client C' wishes to use P

o In CCS: P and C' must share some action name a
—> C could access P without being granted it by S

o In m-calculus :

¢ initially only S has access to P (using link a)
¢ using another link b, C' can request access to P

o Formally:

_ , 3 , , e link to P

b(a).S" || b(c).¢{d).C" || a(e).P

~—— “——— “—— o b: link between S and C

IS) C P
T 8 || a(d).C" || a(e).P’ o c: “placeholder” for a

o d: data to be printed
o e: “placeholder” for d

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

@ Server S controls access to printer P

o Client C' wishes to use P

o In CCS: P and C must share some action name a
—> C could access P without being granted it by S

o In m-calculus :

¢ initially only S has access to P (using link a)
¢ using another link b, C' can request access to P

o Formally:

_ , , , e link to P

b(a).S" || b(c).€{d).C" || a(e).P

~~—— ———— “~—— o b: link between S and C

IS) C P
I, g | @(d).C" || a(e).P’ e ¢: “placeholder” for a
— g | C" || P'le — d] e d: data to be printed
o e: “placeholder” for d

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Mobility in Concurrent Systems III

Example 11.2 (Dynamic access to resources; continued)

o Different roles of action name a:

¢ in interaction between S and C:
object transferred from S to C

@ in interaction between C' and P:
name of communication link

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Mobility in Concurrent Systems III

Example 11.2 (Dynamic access to resources; continued)

o Different roles of action name a:
¢ in interaction between S and C:
object transferred from S to C
@ in interaction between C' and P:
name of communication link

o Intuitively, names represent access rights:

o a: for P
e b: for S
e d: for data to be printed

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Mobility in Concurrent Systems III

Example 11.2 (Dynamic access to resources; continued)

o Different roles of action name a:
¢ in interaction between S and C:
object transferred from S to C
@ in interaction between C' and P:
name of communication link
o Intuitively, names represent access rights:
e a: for P
o b: for S
e d: for data to be printed

o If a is only way to access P
=—> P “moves” from S to C'

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

	Repetition: The Alternating-Bit Protocol
	Duplication of Messages
	Handling Duplication of Messages
	Concluding Remarks
	Outlook: Modeling Mobile Concurrent Systems

