

Modeling Concurrent and Probabilistic Systems

Lecture 1: Introduction

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/mcps09/>

Summer Semester 2009

1 Preliminaries

2 Introduction

3 Syntax of CCS

	1st part: CCS	2nd part: Probabilistic Models
Lectures	Thomas Noll <noll>	Joost-Pieter Katoen <katoen>
Exercises	Daniel Klink <klink>	Tingting Han <tingting.han>
Assistant		Falak Sher <chfalak@gmail.com>

(add “@cs.rwth-aachen.de” to e-mail addresses)

- Diploma programme (**Informatik**)
 - Theoretische Informatik
 - Vertiefungsfach Formale Methoden, Programmiersprachen und Softwarevalidierung
- Master programme (**Software Systems Engineering**)
 - Theoretical CS
 - Specialization Formal Methods, Programming Languages and Software Validation
- In general:
 - interest in **formal models** for software systems
(in particular: *reactive* systems)
 - application of **mathematical reasoning methods**
- Expected: basic knowledge in
 - formal languages and automata theory
 - mathematical logic
 - probability theory

- Schedule:
 - **Lecture** Thu 15:00–16:30 AH 5 (starting April 23)
 - **Lecture** Fri 13:00–14:30 (?) AH 2 (starting April 24)
 - **Exercise class** Wed 13:30–15:00 AH 3 (starting May 6)
- see web page for complete list of dates
- 1st assignment sheet: Wed April 29 on web
- Work on assignments in **groups of three**
- **Examination** (8 ECTS credit points):
written [July] or oral [July–Oct.]
(depending on number of candidates)
- Admission requires **at least 50% of the points** in the exercises
- Solutions to exercises and exam in **English or German**

1 Preliminaries

2 Introduction

3 Syntax of CCS

Goal

Describing and analyzing the behavior of concurrent and/or probabilistic systems

Motivation

- Supporting the **design phase**
 - “Programming Concurrent Systems”
 - synchronization, scheduling, semaphores, ...
- Verifying **functional correctness** properties
 - “Model Checking”
 - validation of mutual exclusion, fairness, no deadlocks, ...
- Analyzing **performance and dependability** properties
 - “Performance Modeling”
 - queue throughput, response time in real-time systems, ...

Observation: **concurrency** introduces new phenomena

Example 1.1

$$\begin{array}{c} x := 0; \\ (x := x + 1 \parallel x := x + 2) \quad \text{value of } x: 0123 \\ \quad 13 \qquad \qquad \qquad 2 \end{array}$$

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1, or 3
- If **exclusive access** to shared memory and **atomic execution** of assignments guaranteed
 \Rightarrow only possible outcome: 3

The problem arises due to the combination of

- **concurrency** and
- **interaction** (here: via shared memory)

Conclusion

When modelling concurrent systems, the precise description of the mechanisms of both **concurrency** and **interaction** is crucially important.

- Thus: “classical” model for sequential systems

System : Input → Output

(**transformational systems**) is not adequate

- Missing: aspect of **interaction**
- Rather: **reactive systems** which interact with environment and among themselves
- Main interest: not terminating computations but **infinite behavior** (system maintains ongoing interaction with environment)
- Examples:
 - operating systems
 - embedded systems controlling mechanical or electrical devices (planes, cars, home appliances, ...)
 - power plants, production lines, ...

Observation: reactive systems often **safety critical**

⇒ correct behavior has to be ensured

- **Safety** properties: “Nothing bad is going to happen.”
E.g., “at most one process in the critical section”
- **Liveness** properties: “Eventually something good will happen.”
E.g., “the server will finally answer”
- **Fairness** properties: “No component will starve to death.”
E.g., “any process requiring entry to the critical section will eventually be admitted”

Our approach I

The formal verification of such properties requires a **mathematical model** of the underlying system. Here we use the following approach:

- **interaction** is interpreted by explicit, synchronous **communication** and
- **concurrency** is modelled by **interleaving**, i.e., the (communication) actions of concurrent processes are merged:

$$(a; b) \parallel (x; y) \quad \text{corresponds to} \quad \begin{array}{c} a & a & x \\ b & \text{or} & x \\ x & & b & \text{or} & a \\ & & & b & \text{or} \dots \\ y & & y & & y \end{array}$$

⇒ reduction of concurrency to **nondeterminism**
(cf. multitasking on sequential computers)

Possible alternatives:

- interaction via shared memory/asynchronous message passing/...
- concurrency via true parallelism (Petri Nets)
- later: **probabilistic** aspects [Katoen]

“Primary meaning” of a system: **potential of communication**
i.e., the set of possible communication sequences

In particular:

- I/O modelled as communication with environment
- storage access modelled as communication with a “storage process”

- 1st part of course (CCS):
 - ② Calculus of Communicating Systems (CCS)
(syntax, labeled transition systems, transition rules)
 - ③ Equivalence of CCS Processes
(trace equivalence, strong/weak bisimulation, observation congruence, axiomatizability of equivalences)
 - ④ Case Study: Alternating-Bit Protocol
(modeling channels/sender/receiver, correctness, extensions)
- 2nd part of course (Probabilistic Models):
 - ⑤ Stochastic processes
(Markov chains and decision processes)
 - ⑥ Probabilistic (bi)simulation
(strong bisimulation/simulation, simulation equivalence)
 - ⑦ Probabilistic process algebra
(probabilistic transition systems, operators, axiomatizability of probabilistic bisimulation)
 - ⑧ Further Issues
(nondeterminism, continuous time, Markovian process algebra)

(also see the collection [“Handapparat Probabilistic Models for Concurrency / PMC”] at the CS Library)

- 1st part of course (CCS):
 - R. Milner: *Communication and Concurrency*
Prentice-Hall, 1989
 - R. Milner: *Communicating and Mobile Systems: the π -calculus*
Cambridge University Press, 1999
 - J.A. Bergstra, A. Ponse, S.A. Smolka: *Handbook of Process Algebra*
Elsevier, 2001
- 2nd part of course (Probabilistic Models):
 - H.C. Tijms: *A first course in stochastic models*
Wiley, 2003
 - J. Hillston: *A Compositional Approach to Performance Modelling*
Cambridge University Press, 1996
 - H. Hermanns: *Interactive Markov Chains: The Quest for Quantified Quality*
LNCS 2428, Springer, 2002
 - E. Brinksma, H. Hermanns, J.-P. Katoen: *Lectures on Formal Methods and Performance Analysis*, LNCS 2090, Springer, 2001

1 Preliminaries

2 Introduction

3 Syntax of CCS

- Robin Milner: *A Calculus of Communicating Systems*
LNCS 92, Springer, 1980
- Robin Milner: *Communication and Concurrency*
Prentice-Hall, 1989
- Robin Milner: *Communicating and Mobile Systems: the π -calculus*
Cambridge University Press, 1999

Approach: describing concurrency on a simple and abstract level,
using only a few basic primitives

- no explicit storage (variables)
- no explicit representation of values (numbers, Booleans, ...)

⇒ concurrent system reduced to **communication potential**

Definition 1.2 (Syntax of CCS)

- Let N be a set of **(action) names**.
- $\overline{N} := \{\overline{a} \mid a \in N\}$ denotes the set of **co-names**.
- $Act := N \cup \overline{N} \cup \{\tau\}$ is the set of **actions** where τ denotes the **silent** (or: **unobservable**) action.
- Let Pid be a set of **process identifiers**.
- The set Prc of **process expressions** is defined by the following syntax:
$$\begin{array}{ll} P ::= \text{nil} & \text{(inaction)} \\ | \quad \alpha.P & \text{(prefixing)} \\ | \quad P_1 + P_2 & \text{(choice)} \\ | \quad P_1 \parallel P_2 & \text{(parallel composition)} \\ | \quad \text{new } a \, P & \text{(restriction)} \\ | \quad A(a_1, \dots, a_n) & \text{(process call)} \end{array}$$
where $\alpha \in Act$, $a, a_i \in N$, and $A \in Pid$.

Definition 1.2 (continued)

- A **(recursive) process definition** is an equation system of the form

$$(A_i(a_{i1}, \dots, a_{in_i}) = P_i \mid 1 \leq i \leq k)$$

where $k \geq 1$, $A_i \in Pid$ (pairwise different), $a_{ij} \in N$ (a_{i1}, \dots, a_{in_i} pairwise different), and $P_i \in Prc$ (with process identifiers from $\{A_1, \dots, A_k\}$).

Meaning of CCS Constructs

- nil is an **inactive process** that can do nothing.
- $\alpha.P$ can execute α and then behaves as P .
- An action $a \in N$ ($\overline{a} \in \overline{N}$) is interpreted as an **input** (**output**, resp.) operation. Both are complementary: if executed in parallel (i.e., in $P_1 \parallel P_2$), they are merged into a τ -action.
- $P_1 + P_2$ represents the **non-deterministic choice** between P_1 and P_2 .
- $P_1 \parallel P_2$ denotes the **concurrent execution** of P_1 and P_2 , involving **interleaving** or **communication**.
- The **restriction** $\text{new } a \text{ } P$ declares a as a local name which is only known in P .
- The behavior of a **process call** $A(a_1, \dots, a_n)$ is defined by the right-hand side of the corresponding equation where a_1, \dots, a_n replace the formal name parameters.

Example 1.3

- ① One-place buffer
- ② Two-place buffer
- ③ Parallel specification of two-place buffer

(on the board)

- $\overline{\overline{a}}$ means a
- $P_1 + \dots + P_n$ ($n \in \mathbb{N}$) sometimes written as $\sum_{i=1}^n P_i$ where $\sum_{i=1}^0 P_i := \text{nil}$
- “. nil ” can be omitted: $a.b$ means $a.b.\text{nil}$
- $\text{new } a, b.P$ means $\text{new } a \text{ new } b.P$
- $A(a_1, \dots, a_n)$ sometimes written as $A(\vec{a})$, $A()$ as A
- prefixing and restriction binds stronger than composition, composition binds stronger than choice:

$\text{new } a.P + b.Q \parallel R$ means $(\text{new } a.P) + ((b.Q) \parallel R)$