Modeling Concurrent and Probabilistic Systems

Lecture 2: Semantics of CCS

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps09/
p p

Summer Semester 2009

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

© Repetition: Syntax of CCS

Rm Modeling Concurrent and Pro ilisti 1 Summer Semester

Repetition: Syntax of CCS I

Definition (Syntax of CCS)

@ Let N be a set of (action) names.
@ N :={a|ac N} denotes the set of co-names.

@ Act := NU N U{r} is the set of actions where 7 denotes the silent
(or: unobservable) action.

o Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following

syntax: P ::= nil (inaction)
| a.P (prefixing)
| P+ P (choice)
| P P (parallel composition)
| newaP (restriction)
| A(ay,...,an) (process call)

where o € Act, a,a; € N, and A € Pid.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Syntax of CCS II

Definition (continued)

@ A (recursive) process definition is an equation system of the form
(Ai(ai1, .- am,) =P | 1<i<k)

where k > 1, A; € Pid (pairwise different), a;; € N (ai1, ..., Gin,
pairwise different), and P; € Prc (with process identifiers from

{A1,..., Ax}).

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.

Rm Modeling Concurrent and Probabilistic Systems Summer Semester

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.

® «.P can execute o and then behaves as P.

Rm Modeling Concurrent and Probabilistic Systems Summer Semester

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
® «.P can execute o and then behaves as P.

@ An action a € N (@ € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Py || P,), they are merged into a 7-action.

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

«o.P can execute o and then behaves as P.

@ An action a € N (@ € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Py || P,), they are merged into a 7-action.

o P; + P, represents the non-deterministic choice between P; and Ps.

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

«o.P can execute o and then behaves as P.

@ An action a € N (@ € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Py || P,), they are merged into a 7-action.

o P; + P, represents the non-deterministic choice between P; and Ps.

@ Py || P, denotes the concurrent execution of P; and Py, involving
interleaving or communication.

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

«o.P can execute o and then behaves as P.

@ An action a € N (@ € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Py || P,), they are merged into a 7-action.

o P; + P, represents the non-deterministic choice between P; and Ps.

@ Py || P, denotes the concurrent execution of P; and Py, involving
interleaving or communication.

@ The restriction new a P declares a as a local name which is only
known in P.

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
® «.P can execute o and then behaves as P.

@ An action a € N (@ € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Py || P,), they are merged into a 7-action.

o P; + P, represents the non-deterministic choice between P; and Ps.

@ Py || P, denotes the concurrent execution of P; and Py, involving
interleaving or communication.

@ The restriction new a P declares a as a local name which is only
known in P.

@ The behavior of a process call A(aq,...,a,) is defined by the
right-hand side of the corresponding equation where aq,...,a,
replace the formal name parameters.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

CCS Examples

@ One-place buffer
© Two-place buffer

© Parallel specification of two-place buffer

(on the board)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Notational Conventions

@ @ means a

Rm Modeling Concurrent and Probabilisti Summer Semester

Notational Conventions

@ @ means a
e P +...+ P, (n € N) sometimes written as y ;. ; P; where
S0 Pi= il

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Notational Conventions

@ @ means a
e P +...+ P, (n € N) sometimes written as y ;. ; P; where
S0 Pi= il

@ “.nil” can be omitted: a.b means a.b.nil

Rm Modeling Concurrent and Probabilistic Systems

Summer Semester

Notational Conventions

@ @ means a
e P +...+ P, (n € N) sometimes written as y ;. ; P; where
0 .
Y iy Pii=nil
@ “nil” can be omitted: a.b means a.b.nil

@ newa,b P means new anewb P

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Notational Conventions

@ means a

Py +...4+ P, (n € N) sometimes written as) ;. , P; where
0 .

Y iy Pii=nil

“.nil” can be omitted: a.b means a.b.nil

©

©

new a,b P means new a new b P

A(aq,...,a,) sometimes written as A(a), A() as A

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Notational Conventions

@ means a

Py + ...+ P, (n € N) sometimes written as ;" ; P; where
0 .

Y iy Pii=nil

“.nil” can be omitted: a.b means a.b.nil

©

©

new a,b P means new a new b P

A(aq,...,a,) sometimes written as A(a), A() as A

¢ © ¢ ¢

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

newaP +b0.Q || R means (newaP)+ ((b.Q) || R)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

© Semantics of CCS

Rm Modeling Concurrent and Probabilistic S Summer Semester

Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

Definition 2.1 (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S, Act, —)
consisting of

@ aset S of states

@ aset Act of (action) labels

@ a transition relation — C S x Act x S

For (s,a,s') € — we write s — s’. An LTS is called finite if S is so.

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

Definition 2.1 (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S, Act, —)
consisting of

@ aset S of states
@ aset Act of (action) labels

@ a transition relation — C S x Act x S

For (s,a,s') € — we write s — s’. An LTS is called finite if S is so.

4

Remarks:
@ sometimes an initial state so € S is distinguished

o (finite) LTSs correspond to (finite) automata without final states

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Semantics of CCS 1

We define the assignment

syntax — semantics

process definition +— LTS

by induction over the syntactic structure of process expressions. Here
we employ derivation rules of the form

premise(s)
rule name ————
conclusion

which can be composed to complete derivation trees.

Rm Modeling Concurrent and Probabilistic Systems Summer Semester

Semantics of CCS I1

Definition 2.2 (Semantics of CCS)

A process definition (A;(ai1, ..., ain;) = Pi | 1 <i < k) determines the
LTS (Prec, Act,—) whose transitions can be inferred from the
following rules (P, P/, Q,Q" € Prc, a € Act, \€ NUN, a € N):
PP QA
(Act) ———(—— (Com) p
a.P — P Pl|lQ— P |Q
«a / e /
(Suml)# (Sumg)@
PrQ %P PrQ-%Q
«a / e /
(Par)—L— (Pary— — e ,
PlQ—P|Q PlQ—r|Q
P2 p @ Pld— b - P/
(New)— (()a ¢ {a.a}) (Call) @ i]a_> if A(@) =P
newa P — newa P’ A(b) — P’
(Here P[a — b| denotes the replacement of every a; by b; in P.)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Semantics of CCS III

@ One-place buffer:
B(in, out) = in.out.B(in, out)

© Sequential two-place buffer:

By(in, out) = in.Bi(in, out)
By (in,out) = out.By(in, out) + in.Bs(in, out)
Bs(in, out) = out.By(in, out)

@ Parallel two-place buffer:

By (in, out) = new com (B(in, com) || B(com, out))

B(in,out) = in.out.B(in, out)

(on the board)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Semantics of CCS IV

Example 2.3 (continued)

Complete LTS of parallel two-place buffer:

By (in, out) new com (B(in, com) || B(com, out))
lin /in Tout
new com (¢om.B(in, com) | — new com (B(in, com) ||

B(com, out)) out.B(com, out))
Nout S in

new com (com.B(in, com) || out.B(com, out))

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009 13

	Repetition: Syntax of CCS
	Semantics of CCS

