
Modeling Concurrent and Probabilistic Systems

Lecture 2: Semantics of CCS

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

Summer Semester 2009

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps09/


Outline

1 Repetition: Syntax of CCS

2 Semantics of CCS

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 2



Repetition: Syntax of CCS I

Definition (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N } denotes the set of co-names.

Act := N ∪N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following
syntax: P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new aP (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act , a, ai ∈ N , and A ∈ Pid .

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 3



Repetition: Syntax of CCS II

Definition (continued)

A (recursive) process definition is an equation system of the form

(Ai(ai1, . . . , aini
) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), aij ∈ N (ai1, . . . , aini

pairwise different), and Pi ∈ Prc (with process identifiers from
{A1, . . . , Ak}).

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 4



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 5



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 5



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 5



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 5



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 5



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 5



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 5



CCS Examples

Example
1 One-place buffer

2 Two-place buffer

3 Parallel specification of two-place buffer

(on the board)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 6



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1 Pi where∑0
i=1 Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 7



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1 Pi where∑0
i=1 Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 7



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1 Pi where∑0
i=1 Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 7



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1 Pi where∑0
i=1 Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 7



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1 Pi where∑0
i=1 Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 7



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1 Pi where∑0
i=1 Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 7



Outline

1 Repetition: Syntax of CCS

2 Semantics of CCS

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 8



Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition 2.1 (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S ,Act ,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s′) ∈ −→ we write s
α

−→ s′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished

(finite) LTSs correspond to (finite) automata without final states

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 9



Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition 2.1 (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S ,Act ,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s′) ∈ −→ we write s
α

−→ s′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished

(finite) LTSs correspond to (finite) automata without final states

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 9



Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition 2.1 (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S ,Act ,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s′) ∈ −→ we write s
α

−→ s′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished

(finite) LTSs correspond to (finite) automata without final states

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 9



Semantics of CCS I

We define the assignment

syntax → semantics

process definition 7→ LTS

by induction over the syntactic structure of process expressions. Here
we employ derivation rules of the form

rule name
premise(s)

conclusion

which can be composed to complete derivation trees.

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 10



Semantics of CCS II

Definition 2.2 (Semantics of CCS)

A process definition (Ai(ai1, . . . , aini
) = Pi | 1 ≤ i ≤ k) determines the

LTS (Prc,Act ,−→) whose transitions can be inferred from the
following rules (P,P ′, Q,Q′ ∈ Prc, α ∈ Act , λ ∈ N ∪ N , a ∈ N ):

(Act)
α.P

α
−→ P

(Com)
P

λ
−→ P ′ Q

λ
−→ Q′

P ‖ Q
τ

−→ P ′ ‖ Q′

(Sum1)
P

α
−→ P ′

P + Q
α

−→ P ′
(Sum2)

Q
α

−→ Q′

P + Q
α

−→ Q′

(Par1)
P

α
−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
(Par2)

Q
α

−→ Q′

P ‖ Q
α

−→ P ‖ Q′

(New)
P

α
−→ P ′ (α /∈ {a, a})

new aP
α

−→ new aP ′
(Call)

P [~a 7→ ~b]
α

−→ P ′

A(~b)
α

−→ P ′
if A(~a) = P

(Here P [~a 7→ ~b] denotes the replacement of every ai by bi in P .)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11



Semantics of CCS III

Example 2.3

1 One-place buffer:

B(in, out) = in.out .B(in, out)

2 Sequential two-place buffer:

B0(in, out) = in.B1(in, out)

B1(in, out) = out .B0(in , out) + in.B2(in, out)

B2(in, out) = out .B1(in , out)

3 Parallel two-place buffer:

B‖(in, out) = new com (B(in, com) ‖ B(com , out))

B(in, out) = in.out .B(in, out)

(on the board)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 12



Semantics of CCS IV

Example 2.3 (continued)

Complete LTS of parallel two-place buffer:

B‖(in , out) new com (B(in, com) ‖ B(com , out))
↓in ւin ↑out

new com (com .B(in, com) ‖
B(com , out))

τ
−→ new com (B(in, com) ‖

out .B(com , out))
տout ւin

new com (com .B(in , com) ‖ out .B(com , out))

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 13


	Repetition: Syntax of CCS
	Semantics of CCS

