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@ Repetition: Syntax and Semantics of CCS
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Repetition: Syntax of CCS I

Definition (Syntax of CCS)

@ Let N be a set of (action) names.
@ N :={a|ac N} denotes the set of co-names.

@ Act := NU N U{r} is the set of actions where 7 denotes the silent
(or: unobservable) action.

o Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following

syntax: P ::= nil (inaction)
| a.P (prefixing)
| P+ P (choice)
| P P (parallel composition)
| newaP (restriction)
| A(ay,...,an) (process call)

where o € Act, a,a; € N, and A € Pid.
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Repetition: Syntax of CCS II

Definition (continued)

@ A (recursive) process definition is an equation system of the form
(Ai(ai1, .- am,) =P | 1<i<k)

where k > 1, A; € Pid (pairwise different), a;; € N (ai1, ..., Gin,
pairwise different), and P; € Prc (with process identifiers from

{A1,..., Ax}).
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Repetition: Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

Definition (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S, Act, —)
consisting of

@ aset S of states
@ aset Act of (action) labels

@ a transition relation — C S x Act x S

For (s,a,s') € — we write s — s’. An LTS is called finite if S is so.

4

Remarks:
@ sometimes an initial state so € S is distinguished

o (finite) LTSs correspond to (finite) automata without final states
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Repetition: Semantics of CCS 1

Definition (Semantics of CCS)

A process definition (A;(ai1, ..., ain;) = Pi | 1 <i < k) determines the
LTS (Prec, Act,—) whose transitions can be inferred from the
following rules (P, P/, Q,Q" € Prc, a € Act, \€ NUN, a € N):
PP QA
(Act) ———(—— (Com) p
a.P — P Pl|lQ— P |Q
«a / e /
(Suml)# (Sum2)M
PrQ %P PrQ-%Q
«a / e /
(Par)—L— (Pary— — e ,
PlQ—P|Q PlQ—r|Q
P2 p @ Pld— b - P/
(New)— (()a ¢ {a.a}) (Call) @ i ]a_> if A(@) =P
newa P — newa P’ A(b) — P’
(Here P[a — b| denotes the replacement of every a; by b; in P.)
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Repetition: Semantics of CCS 11

@ One-place buffer:
B(in, out) = in.out.B(in, out)

© Sequential two-place buffer:

By(in, out) = in.Bi(in, out)
By (in,out) = out.By(in, out) + in.Bs(in, out)
Bs(in, out) = out.By(in, out)

@ Parallel two-place buffer:

By (in, out) = new com (B(in, com) || B(com, out))

B(in,out) = in.out.B(in, out)

(on the board)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009



Semantics of CCS III

Example (continued)

Complete LTS of parallel two-place buffer:

By (in, out) new com (B(in, com) || B(com, out))
lin /in Tout
new com (¢om.B(in, com) | — new com (B(in, com) ||

B(com, out)) out.B(com, out))
Nout S in

new com (com.B(in, com) || out.B(com, out))
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© Recursive Processes
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Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)

(simultaneous recursion)
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Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)
(simultaneous recursion)
Alternative: explicit fixpoint operator
o syntax: P u=nil|...|fixAP € Prc (where A € Pid)
P[A — P] < p

fix AP -2 fix AP
(Act)

@ semantics: (Fix)

in.out.in.out.B - out.in.out.B

fix B in.out. B 2 fix B oul.in.ouf. B
(nested scalar recursion)

@ example: (Fix)
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Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)
(simultaneous recursion)
Alternative: explicit fixpoint operator
o syntax: P u=nil|...|fixAP € Prc (where A € Pid)
P[A — P] < p

fix AP -2 fix AP
(Act)

@ semantics: (Fix)

in.out.in.out.B - out.in.out.B

fix B in.out. B 2 fix B oul.in.ouf. B
(nested scalar recursion)

@ example: (Fix)

Advantage: only process term level required (no equations)
— simplification of theory

Disadvantage: bad readability of process definitions
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© Equivalence of CCS Processes
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Equivalence Relations

Goal: identify process expressions which have the same “meaning” but
differ in their syntax

Definition 3.1 (Equivalence relation)

Let =2 C S x S be a binary relation over some set S. Then 2 is called
an equivalence relation if it is

o reflexive, i.e., s = s for every s € S,
o symmetric, i.e., s = t implies t & s for every s,t € S, and

o transitive, i.e., s 2t and t = v implies s = u for every s,t,u € S.
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Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the
same “meaning”
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Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the
same “meaning”

o Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

o Communication potential described by LTS
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Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the
same “meaning”

o Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

(2

Communication potential described by LTS

Idea: define (for processes P, Q)
P=qQiff LTS(P) = LTS(Q)
But: yields too many distinctions:

Example 3.2

X(a) =a.X(a) Y(a)=a.aY(a)

©

(2
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Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the
same “meaning”

o Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

(2

Communication potential described by LTS

Idea: define (for processes P, Q)
P=qQiff LTS(P) = LTS(Q)
But: yields too many distinctions:

Example 3.2

©

(2

LTS: (:? alla

although both processes can (only) execute infinitely many a-actions,
and should be considered equivalent therefore
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Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

@ identifies processes whose L'T'Ss coincide,
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Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

@ identifies processes whose L'T'Ss coincide,

© implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and
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Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

@ identifies processes whose L'T'Ss coincide,

© implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

@ is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).
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Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

@ identifies processes whose L'T'Ss coincide,

© implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

@ is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

Formally: we are looking for a congruence relation = C Prec x Pre
such that

LTS(P) = LTS(Q) = P~ Q = Tr(P)= Tr(Q)

where Tr(P) is the set of all traces of P (see Def. 4.1)
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CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
—> modular system development
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CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
—> modular system development

Definition 3.3 (CCS congruence)

An equivalence relation = C Prc x Pre is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P,Q, R € Prc such
that P = () then
a.P = a.Q

P+R=Q+R

R+P=2R+Q

PIR=Q|R

RIP=R|Q

newa P = newa Q@

for every a € Act and a € N.
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