Modeling Concurrent and Probabilistic Systems

Lecture 3: Equivalence of CCS Processes

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

Summer Semester 2009

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

@ Repetition: Syntax and Semantics of CCS

Rm Modeling Concurrent and Prot i Summer Semester

Repetition: Syntax of CCS I

Definition (Syntax of CCS)

@ Let N be a set of (action) names.
@ N :={a|ac N} denotes the set of co-names.

@ Act := NU N U{r} is the set of actions where 7 denotes the silent
(or: unobservable) action.

o Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following

syntax: P ::= nil (inaction)
| a.P (prefixing)
| P+ P (choice)
| P P (parallel composition)
| newaP (restriction)
| A(ay,...,an) (process call)

where o € Act, a,a; € N, and A € Pid.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Syntax of CCS II

Definition (continued)

@ A (recursive) process definition is an equation system of the form
(Ai(ai1, .- am,) =P | 1<i<k)

where k > 1, A; € Pid (pairwise different), a;; € N (ai1, ..., Gin,
pairwise different), and P; € Prc (with process identifiers from

{A1,..., Ax}).

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

Definition (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S, Act, —)
consisting of

@ aset S of states
@ aset Act of (action) labels

@ a transition relation — C S x Act x S

For (s,a,s') € — we write s — s’. An LTS is called finite if S is so.

4

Remarks:
@ sometimes an initial state so € S is distinguished

o (finite) LTSs correspond to (finite) automata without final states

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Semantics of CCS 1

Definition (Semantics of CCS)

A process definition (A;(ai1, ..., ain;) = Pi | 1 <i < k) determines the
LTS (Prec, Act,—) whose transitions can be inferred from the
following rules (P, P/, Q,Q" € Prc, a € Act, \€ NUN, a € N):
PP QA
(Act) ———(—— (Com) p
a.P — P Pl|lQ— P |Q
«a / e /
(Suml)# (Sum2)M
PrQ %P PrQ-%Q
«a / e /
(Par)—L— (Pary— — e ,
PlQ—P|Q PlQ—r|Q
P2 p @ Pld— b - P/
(New)— (()a ¢ {a.a}) (Call) @ i]a_> if A(@) =P
newa P — newa P’ A(b) — P’
(Here P[a — b| denotes the replacement of every a; by b; in P.)

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Semantics of CCS 11

@ One-place buffer:
B(in, out) = in.out.B(in, out)

© Sequential two-place buffer:

By(in, out) = in.Bi(in, out)
By (in,out) = out.By(in, out) + in.Bs(in, out)
Bs(in, out) = out.By(in, out)

@ Parallel two-place buffer:

By (in, out) = new com (B(in, com) || B(com, out))

B(in,out) = in.out.B(in, out)

(on the board)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Semantics of CCS III

Example (continued)

Complete LTS of parallel two-place buffer:

By (in, out) new com (B(in, com) || B(com, out))
lin /in Tout
new com (¢om.B(in, com) | — new com (B(in, com) ||

B(com, out)) out.B(com, out))
Nout S in

new com (com.B(in, com) || out.B(com, out))

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

© Recursive Processes

Rm Modeling Concurrent and Probabilistic S Summer Semester

Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)

(simultaneous recursion)

Rm Modeling Concurrent and Probabilistic Systems Summer Semester

Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)
(simultaneous recursion)
Alternative: explicit fixpoint operator
o syntax: P u=nil|...|fixAP € Prc (where A € Pid)
P[A — P] < p

fix AP -2 fix AP
(Act)

@ semantics: (Fix)

in.out.in.out.B - out.in.out.B

fix B in.out. B 2 fix B oul.in.ouf. B
(nested scalar recursion)

@ example: (Fix)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)
(simultaneous recursion)
Alternative: explicit fixpoint operator
o syntax: P u=nil|...|fixAP € Prc (where A € Pid)
P[A — P] < p

fix AP -2 fix AP
(Act)

@ semantics: (Fix)

in.out.in.out.B - out.in.out.B

fix B in.out. B 2 fix B oul.in.ouf. B
(nested scalar recursion)

@ example: (Fix)

Advantage: only process term level required (no equations)
— simplification of theory

Disadvantage: bad readability of process definitions

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

© Equivalence of CCS Processes

Rm Modeling Concurrent and Probabilisti Summer Semester

Equivalence Relations

Goal: identify process expressions which have the same “meaning” but
differ in their syntax

Definition 3.1 (Equivalence relation)

Let =2 C S x S be a binary relation over some set S. Then 2 is called
an equivalence relation if it is

o reflexive, i.e., s = s for every s € S,
o symmetric, i.e., s = t implies t & s for every s,t € S, and

o transitive, i.e., s 2t and t = v implies s = u for every s,t,u € S.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 12

Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the
same “meaning”

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the
same “meaning”

o Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

o Communication potential described by LTS

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the
same “meaning”

o Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

(2

Communication potential described by LTS

Idea: define (for processes P, Q)
P=qQiff LTS(P) = LTS(Q)
But: yields too many distinctions:

Example 3.2

X(a) =a.X(a) Y(a)=a.aY(a)

©

(2

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 13

Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the
same “meaning”

o Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

(2

Communication potential described by LTS

Idea: define (for processes P, Q)
P=qQiff LTS(P) = LTS(Q)
But: yields too many distinctions:

Example 3.2

©

(2

LTS: (:? alla

although both processes can (only) execute infinitely many a-actions,
and should be considered equivalent therefore

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 13

Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

@ identifies processes whose L'T'Ss coincide,

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

@ identifies processes whose L'T'Ss coincide,

© implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

@ identifies processes whose L'T'Ss coincide,

© implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

@ is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

@ identifies processes whose L'T'Ss coincide,

© implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

@ is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

Formally: we are looking for a congruence relation = C Prec x Pre
such that

LTS(P) = LTS(Q) = P~ Q = Tr(P)= Tr(Q)

where Tr(P) is the set of all traces of P (see Def. 4.1)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 14

CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
—> modular system development

m' Modeling Concurrent and Probabilistic Systems Summer Semester

CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
—> modular system development

Definition 3.3 (CCS congruence)

An equivalence relation = C Prc x Pre is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P,Q, R € Prc such
that P = () then
a.P = a.Q

P+R=Q+R

R+P=2R+Q

PIR=Q|R

RIP=R|Q

newa P = newa Q@

for every a € Act and a € N.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 15

	Repetition: Syntax and Semantics of CCS
	Recursive Processes
	Equivalence of CCS Processes

