
Modeling Concurrent and Probabilistic Systems

Lecture 3: Equivalence of CCS Processes

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

Summer Semester 2009

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

Outline

1 Repetition: Syntax and Semantics of CCS

2 Recursive Processes

3 Equivalence of CCS Processes

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 2

Repetition: Syntax of CCS I

Definition (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N } denotes the set of co-names.

Act := N ∪N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following
syntax: P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new aP (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act , a, ai ∈ N , and A ∈ Pid .

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 3

Repetition: Syntax of CCS II

Definition (continued)

A (recursive) process definition is an equation system of the form

(Ai(ai1, . . . , aini
) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), aij ∈ N (ai1, . . . , aini

pairwise different), and Pi ∈ Prc (with process identifiers from
{A1, . . . , Ak}).

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 4

Repetition: Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S ,Act ,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s′) ∈ −→ we write s
α

−→ s′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished

(finite) LTSs correspond to (finite) automata without final states

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 5

Repetition: Semantics of CCS I

Definition (Semantics of CCS)

A process definition (Ai(ai1, . . . , aini
) = Pi | 1 ≤ i ≤ k) determines the

LTS (Prc,Act ,−→) whose transitions can be inferred from the
following rules (P,P ′, Q,Q′ ∈ Prc, α ∈ Act , λ ∈ N ∪ N , a ∈ N):

(Act)
α.P

α
−→ P

(Com)
P

λ
−→ P ′ Q

λ
−→ Q′

P ‖ Q
τ

−→ P ′ ‖ Q′

(Sum1)
P

α
−→ P ′

P + Q
α

−→ P ′
(Sum2)

Q
α

−→ Q′

P + Q
α

−→ Q′

(Par1)
P

α
−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
(Par2)

Q
α

−→ Q′

P ‖ Q
α

−→ P ‖ Q′

(New)
P

α
−→ P ′ (α /∈ {a, a})

new aP
α

−→ new aP ′
(Call)

P [~a 7→ ~b]
α

−→ P ′

A(~b)
α

−→ P ′
if A(~a) = P

(Here P [~a 7→ ~b] denotes the replacement of every ai by bi in P .)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 6

Repetition: Semantics of CCS II

Example

1 One-place buffer:

B(in, out) = in.out .B(in, out)

2 Sequential two-place buffer:

B0(in, out) = in.B1(in, out)

B1(in, out) = out .B0(in , out) + in.B2(in, out)

B2(in, out) = out .B1(in , out)

3 Parallel two-place buffer:

B‖(in, out) = new com (B(in, com) ‖ B(com , out))

B(in, out) = in.out .B(in, out)

(on the board)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 7

Semantics of CCS III

Example (continued)

Complete LTS of parallel two-place buffer:

B‖(in , out) new com (B(in, com) ‖ B(com , out))
↓in ւin ↑out

new com (com .B(in, com) ‖
B(com , out))

τ
−→ new com (B(in, com) ‖

out .B(com , out))
տout ւin

new com (com .B(in , com) ‖ out .B(com , out))

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 8

Outline

1 Repetition: Syntax and Semantics of CCS

2 Recursive Processes

3 Equivalence of CCS Processes

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 9

Recursive Processes

Here: recursive processes defined using equations such as

B(in, out) = in.out .B(in , out)

(simultaneous recursion)

Alternative: explicit fixpoint operator

syntax: P ::= nil | . . . | fixAP ∈ Prc (where A ∈ Pid)

semantics: (Fix)
P [A 7→ P]

α
−→ P ′

fixAP
α

−→ fixAP ′

example: (Fix)

(Act)

in.out .in .out .B
in
−→ out .in.out .B

fixB in.out .B
in
−→ fixB out .in.out .B

(nested scalar recursion)

Advantage: only process term level required (no equations)
=⇒ simplification of theory

Disadvantage: bad readability of process definitions

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 10

Outline

1 Repetition: Syntax and Semantics of CCS

2 Recursive Processes

3 Equivalence of CCS Processes

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 11

Equivalence Relations

Goal: identify process expressions which have the same “meaning” but
differ in their syntax

Definition 3.1 (Equivalence relation)

Let ∼= ⊆ S × S be a binary relation over some set S. Then ∼= is called
an equivalence relation if it is

reflexive, i.e., s ∼= s for every s ∈ S,

symmetric, i.e., s ∼= t implies t ∼= s for every s, t ∈ S, and

transitive, i.e., s ∼= t and t ∼= u implies s ∼= u for every s, t, u ∈ S.

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 12

Equivalence of CCS Processes

Generally: two syntactic objects are equivalent if they have the
same “meaning”

Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

Communication potential described by LTS

Idea: define (for processes P,Q)
P ∼= Q iff LTS (P) = LTS (Q)

But: yields too many distinctions:

Example 3.2

X(a) = a.X(a) Y (a) = a.a.Y (a)

LTS:
•
	
a

•
a ↓↑ a

•

although both processes can (only) execute infinitely many a-actions,
and should be considered equivalent therefore

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 13

Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

1 identifies processes whose LTSs coincide,

2 implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

3 is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

Formally: we are looking for a congruence relation ∼= ⊆ Prc × Prc

such that

LTS (P) = LTS (Q) =⇒ P ∼= Q =⇒ Tr(P) = Tr(Q)

where Tr(P) is the set of all traces of P (see Def. 4.1)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 14

CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
=⇒ modular system development

Definition 3.3 (CCS congruence)

An equivalence relation ∼= ⊆ Prc × Prc is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P,Q,R ∈ Prc such
that P ∼= Q then

α.P ∼= α.Q
P + R ∼= Q + R
R + P ∼= R + Q
P ‖ R ∼= Q ‖ R
R ‖ P ∼= R ‖ Q

new aP ∼= new aQ
for every α ∈ Act and a ∈ N .

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 15

	Repetition: Syntax and Semantics of CCS
	Recursive Processes
	Equivalence of CCS Processes

