Modeling Concurrent and Probabilistic Systems

Lecture 4: Trace Equivalence

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

Summer Semester 2009


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

@ Repetition: Equivalence of CCS Processes

Rm Modeling Concurrent and Prot i Summer Semester



Repetition: Equivalence Relations

Goal: identify process expressions which have the same “meaning” but
differ in their syntax

Definition (Equivalence relation)

Let =2 C S x S be a binary relation over some set S. Then 2 is called
an equivalence relation if it is

o reflexive, i.e., s = s for every s € S,

o symmetric, i.e., s = t implies t & s for every s,t € S, and

o transitive, i.e., s 2t and t = v implies s = u for every s,t,u € S.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009



Repetition: Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the
same “meaning”

o Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

(2

Communication potential described by LTS

Idea: define (for processes P, Q)
P=qQiff LTS(P) = LTS(Q)
But: yields too many distinctions:

©

(2

LTS: (:? alla

although both processes can (only) execute infinitely many a-actions,
and should be considered equivalent therefore

Modeling Concurrent and Probabilistic Systems Summer Semester 2009



Repetition: Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

@ identifies processes whose L'T'Ss coincide,

© implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

@ is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

Formally: we are looking for a congruence relation = C Prec x Pre
such that

LTS(P) = LTS(Q) = P~ Q = Tr(P)= Tr(Q)

where Tr(P) is the set of all traces of P (see Def. 4.1)

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009



Repetition: CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
—> modular system development

Definition (CCS congruence)

An equivalence relation = C Prc x Pre is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P,Q, R € Prc such
that P = () then
a.P = a.Q

P+R=Q+R

R+P=2R+Q

PIR=Q|R

RIP=R|Q

newa P = newa Q@

for every a € Act and a € N.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009



© Trace Equivalence

Rm Modeling Concurrent and Probabilistic S Summer Semester



Trace Equivalence 1

Definition 4.1 (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P’ € Prc such that P - P’}

be the trace language of P.
P,Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 4.2 (One-place buffer)

B(in, out) = in.out.B(in, out)

— Tr(B) = (in - out)* - (in + €)

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009



Trace Equivalence 11

Remarks:

]

The trace language of P € Prc is accepted by the LTS of P,
interpreted as an automaton with initial state P and where every
state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence possesses the postulated properties of a process
equivalence:

@ it identifies processes with identical LTSs: the trace language of a
process consists of the (finite) paths in the LTS. Hence processes
with identical LTSs are trace equivalent.

@ it implies trace equivalence: trivial

@ it is a congruence:

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009



Trace Equivalence 111

Trace equivalence is a congruence.

Proof

(only for +; remaining operators analogously)
Clearly we have:

TT(Pl -+ Pg) = TT’(Pl) U TT’(PQ)

Now let P,@Q, R € Prc with Tr(P) = Tr(Q). Then:

Tr(P + R) ( P)
=  Tr(P)U Tr(R) Tr(R) U Tr(P)
=  Tr(Q)U Tr(R) =  Tr(R)uUTrQ)
=  Tr(Q+R) = Tr(R+Q)

— P+ R,Q + R trace equiv. — R+ P,R+ Q@ trace equiv.

O

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 10



Trace Equivalence 1V

@ We have found a process equivalence with the three required
properties.

@ Are we satisfied? No!

P: ° and Q: e
a/\ a la
bl ° 1o

are trace equivalent (Tr(P) = Tr(Q) = {e,a,ab})
o But P and @ are distinguishable:

@ both can execute ab
o but P can deny b
e while @ always has to offer b after a

(e.g., a = “insert coin”, b = “return coffee”)

= take into account such deadlock properties

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009



© Deadlocks

Rm Modeling Concurrent and Probabilistic S Summer Semester



Deadlocks 1

Definition 4.4 (Deadlock)

Let P,Q € Prc and w € Act* such that P — Q and Q /—.
Then @ is called a w-deadlock of P.

@ Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q@ := a.b.nil.
@ Such properties are important since it can be crucial that a certain
communication is eventually possible.
@ We therefore extend our set of postulates: our semantic
equivalence = should
@ identify processes with identical LTSs;
© imply trace equivalence;
© be a congruence; and

@ Dbe deadlock sensitive, i.e., if P = @ and if P has a w-deadlock, then
Q@ has a w-deadlock (and vice versa, by equivalence).

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 13



Deadlocks 11

The combination of congruence and deadlock sensitivity also excludes
the following equivalence:

P: l.(l 2 Q: a,/.\a

[ 4 [ [ ]
b,/ \c bl lc
[ ] [ [ ] [ ]
If P = Q, by congruence this equivalence should hold in every context.
But C[] := newa, b, c (@.b.nil || -) yields the following conflict:
C|P]: ClQ): °
P CEN
L] [ ]

.
T Tl
[ ]

0<—0<—0

no 7-deadlock 7-deadlock

Remarks:
@ Another motivation: elevator control with
a = “call elevator”, b = “choose 1st floor”, ¢ = “choose 2nd floor”,
@ P and @ are obviously trace equivalent

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 14



	Repetition: Equivalence of CCS Processes
	Trace Equivalence
	Deadlocks

