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Repetition: Equivalence Relations

Goal: identify process expressions which have the same “meaning” but
differ in their syntax

Definition (Equivalence relation)

Let ∼= ⊆ S × S be a binary relation over some set S. Then ∼= is called
an equivalence relation if it is

reflexive, i.e., s ∼= s for every s ∈ S,

symmetric, i.e., s ∼= t implies t ∼= s for every s, t ∈ S, and

transitive, i.e., s ∼= t and t ∼= u implies s ∼= u for every s, t, u ∈ S.
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Repetition: Equivalence of CCS Processes

Generally: two syntactic objects are equivalent if they have the
same “meaning”

Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

Communication potential described by LTS

Idea: define (for processes P,Q)
P ∼= Q iff LTS (P ) = LTS (Q)

But: yields too many distinctions:

Example

X(a) = a.X(a) Y (a) = a.a.Y (a)

LTS:
•
	
a

•
a ↓↑ a

•

although both processes can (only) execute infinitely many a-actions,
and should be considered equivalent therefore
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Repetition: Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

1 identifies processes whose LTSs coincide,

2 implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

3 is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

Formally: we are looking for a congruence relation ∼= ⊆ Prc × Prc

such that

LTS (P ) = LTS (Q) =⇒ P ∼= Q =⇒ Tr(P ) = Tr(Q)

where Tr(P ) is the set of all traces of P (see Def. 4.1)
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Repetition: CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
=⇒ modular system development

Definition (CCS congruence)

An equivalence relation ∼= ⊆ Prc × Prc is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P,Q,R ∈ Prc such
that P ∼= Q then

α.P ∼= α.Q

P + R ∼= Q + R

R + P ∼= R + Q

P ‖ R ∼= Q ‖ R

R ‖ P ∼= R ‖ Q

new aP ∼= new aQ

for every α ∈ Act and a ∈ N .
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Trace Equivalence I

Definition 4.1 (Trace language)

For every P ∈ Prc, let

Tr(P ) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w

−→ P ′}

be the trace language of P .

P,Q ∈ Prc are called trace equivalent if Tr(P ) = Tr(Q).

Example 4.2 (One-place buffer)

B(in, out) = in.out .B(in, out)

=⇒ Tr(B) = (in · out)∗ · (in + ε)
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Trace Equivalence II

Remarks:

The trace language of P ∈ Prc is accepted by the LTS of P ,
interpreted as an automaton with initial state P and where every
state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence possesses the postulated properties of a process
equivalence:

1 it identifies processes with identical LTSs: the trace language of a
process consists of the (finite) paths in the LTS. Hence processes
with identical LTSs are trace equivalent.

2 it implies trace equivalence: trivial
3 it is a congruence:
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Trace Equivalence III

Theorem 4.3

Trace equivalence is a congruence.

Proof.

(only for +; remaining operators analogously)
Clearly we have:

Tr(P1 + P2) = Tr(P1) ∪ Tr(P2)

Now let P,Q,R ∈ Prc with Tr(P ) = Tr(Q). Then:

Tr(P + R) Tr(R + P )
= Tr(P ) ∪ Tr(R) = Tr(R) ∪ Tr(P )
= Tr(Q) ∪ Tr(R) = Tr(R) ∪ Tr(Q)
= Tr(Q + R) = Tr(R + Q)

=⇒ P + R,Q + R trace equiv. =⇒ R + P,R + Q trace equiv.
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Trace Equivalence IV

We have found a process equivalence with the three required
properties.

Are we satisfied? No!

P : •
a ւց a
• •

b ↓
•

and Q : •
↓ a
•
↓ b
•

are trace equivalent (Tr(P ) = Tr(Q) = {ε, a, ab})

But P and Q are distinguishable:

both can execute ab

but P can deny b

while Q always has to offer b after a

(e.g., a = “insert coin”, b = “return coffee”)

=⇒ take into account such deadlock properties
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Deadlocks I

Definition 4.4 (Deadlock)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w

−→ Q and Q 6−→.
Then Q is called a w-deadlock of P .

Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q := a.b.nil.

Such properties are important since it can be crucial that a certain
communication is eventually possible.

We therefore extend our set of postulates: our semantic
equivalence ∼= should

1 identify processes with identical LTSs;
2 imply trace equivalence;
3 be a congruence; and
4 be deadlock sensitive, i.e., if P ∼= Q and if P has a w-deadlock, then

Q has a w-deadlock (and vice versa, by equivalence).
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Deadlocks II

The combination of congruence and deadlock sensitivity also excludes
the following equivalence:

P : •
↓ a
•

b ւց c
• •

6∼= Q : •
a ւց a
• •

b ↓ ↓ c
• •

If P ∼= Q, by congruence this equivalence should hold in every context.
But C[·] := new a, b, c (a.b.nil ‖ ·) yields the following conflict:

C[P ] : •
↓ τ
•
↓ τ
•

C[Q] : •
τ ւց τ
• •

τ ↓
•

no τ -deadlock τ -deadlock

Remarks:

Another motivation: elevator control with
a = “call elevator”, b = “choose 1st floor”, c = “choose 2nd floor”,

P and Q are obviously trace equivalent
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