Modeling Concurrent and Probabilistic Systems

Lecture 5: Strong Bisimulation

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

Summer Semester 2009

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

@ Repetition: Deadlocks

Rm Modeling Concurrent and Probabilistic S Summer Semester

Repetition: Deadlocks I

Definition (Deadlock)

Let P,Q € Prc and w € Act* such that P — Q and Q /—.
Then @ is called a w-deadlock of P.

@ Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q@ := a.b.nil.
@ Such properties are important since it can be crucial that a certain
communication is eventually possible.
@ We therefore extend our set of postulates: our semantic
equivalence = should
@ identify processes with identical LTSs;
© imply trace equivalence;
© be a congruence; and

@ Dbe deadlock sensitive, i.e., if P = @ and if P has a w-deadlock, then
Q@ has a w-deadlock (and vice versa, by equivalence).

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Deadlocks 11

The combination of congruence and deadlock sensitivity also excludes
the following equivalence:

P: l.(l 2 Q: a,/.\a

[4 [[]
b,/ \c bl lc
[] [[] []
If P = Q, by congruence this equivalence should hold in every context.
But C[] := newa, b, c (@.b.nil || -) yields the following conflict:
C|P]: ClQ): °
P CEN
L] []

.
T Tl
[]

0<—0<—0

no 7-deadlock 7-deadlock

Remarks:
@ Another motivation: elevator control with
a = “call elevator”, b = “choose 1st floor”, ¢ = “choose 2nd floor”,
@ P and @ are obviously trace equivalent

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

© Definition of Strong Bisimulation

Rm Modeling Concurrent and Pro ilisti 1 Summer Semester

Definition of Strong Bisimulation I

Observation: equivalence should be deadlock sensitive
—> needs to take branching structure of processes into account

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Definition of Strong Bisimulation I

Observation: equivalence should be deadlock sensitive
—> needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P,Q € Prc are equivalent iff, for every a € Act, every a-successor of P
is equivalent to some a-successor of (), and vice versa.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Definition of Strong Bisimulation I

Observation: equivalence should be deadlock sensitive
—> needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P,Q € Prc are equivalent iff, for every a € Act, every a-successor of P
is equivalent to some a-successor of (), and vice versa.

o First version ignores special function of silent action 7
(= weak bisimulation)

@ Unidirectional version considered later (= simulation)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Definition of Strong Bisimulation II

Definition 5.1 (Strong bisimulation)

A relation p C Pre x Pre is called a strong bisimulation if Pp@Q implies,
for every a € Act,

Q@ P55 P — ex. Q' € Presuch that Q — Q' and P/ pQ’
Q@ Q5 Q = ex. P € Presuch that P - P’ and P'pQ’

P,Q € Prc are called strongly bisimilar (notation: P ~ @) if there
exists a strong bisimulation p such that PpQ.

m Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Definition of Strong Bisimulation II

Definition 5.1 (Strong bisimulation)

A relation p C Pre x Pre is called a strong bisimulation if Pp@Q implies,
for every a € Act,

Q@ P55 P — ex. Q' € Presuch that Q — Q' and P/ pQ’
Q@ Q5 Q = ex. P € Presuch that P - P’ and P'pQ’

P,Q € Prc are called strongly bisimilar (notation: P ~ Q) if there
exists a strong bisimulation p such that PpQ.

v

~ 1s an equivalence relation.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Definition of Strong Bisimulation II

Definition 5.1 (Strong bisimulation)

A relation p C Pre x Pre is called a strong bisimulation if Pp@Q implies,
for every a € Act,

Q@ P55 P — ex. Q' € Presuch that Q — Q' and P/ pQ’
Q@ Q5 Q = ex. P € Presuch that P - P’ and P'pQ’

P,Q € Prc are called strongly bisimilar (notation: P ~ Q) if there
exists a strong bisimulation p such that PpQ.

v

~ 1s an equivalence relation.
on the board O

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Examples I
Example 5.3

(on the board)
o

~ @1
alla
Q2

e C M

Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Examples I
Example 5.3

(on the board)
o
P ~
O alla
a Q2
o
P4 Q
la a/\, a
P1 Ql QB
b,/ \, c bl lec
P, P Q2 Q4
(remember: Tr(P) = Tr(Q))

Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Examples I1

Example 5.4

Binary semaphore
(controls exclusive access to two instances of a resource)
Sequential definition:

Semg(get,put) = get.Semi(get, put)
Semq(get,put) = get.Sema(get, put) + put.Semq(get, put)
Semo(get,put) = put.Semq(get, put)

Parallel definition:

S(get,put) = So(get, put) || So(get, put)
So(get,put) = get.Si(get, put)
Si(get,put) = put.So(get, put)

Proposition: Semg(get, put) ~ S(get, put) (see 3rd ex. sheet)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Examples 111

Example 5.5

Two-place buffer
Sequential definition:

By(in, out) = in.Bi(in, out)
Bi(in,out) = out.By(in, out) + in.By(in, out)
By (in, out) = out.Byi(in, out)

Parallel definition:

By (in, out) = new com (B(in,com) || B(com, out))

B(in,out) = in.out.B(in, out)

Proposition: By(in, out) % Bj(in, out) (see 3rd ex. sheet)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 10

© Properties of Strong Bisimulation

Rm Modeling Concurrent and Pro ilisti 1 Summer Semester

Properties of Strong Bisimulation

It remains to show that strong bisimulation has the required properties
of a process equivalence:

@ Identification of processes with identical L'T'Ss:
since the definition of strong bisimulation directly relies on the
transition relation, processes with identical transition trees are
clearly strongly bisimilar

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009 12

Properties of Strong Bisimulation

It remains to show that strong bisimulation has the required properties
of a process equivalence:

@ Identification of processes with identical L'T'Ss:

since the definition of strong bisimulation directly relies on the
transition relation, processes with identical transition trees are
clearly strongly bisimilar

Implication of trace equivalence: following slides

CCS congruence: following slides

© 00

Deadlock sensitivity: following slides

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Strong Bisimulation Implies Trace Equivalence

Definition (Trace language; repetition)

The trace language of P € Pre is given by
Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'}.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Strong Bisimulation Implies Trace Equivalence

Definition (Trace language; repetition)

The trace language of P € Pre is given by
Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'}.

For every P,Q € Prc, P ~ Q implies Tr(P) = Tr(Q).

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009 13

Strong Bisimulation Implies Trace Equivalence

Definition (Trace language; repetition)

The trace language of P € Pre is given by
Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'}.

For every P,Q € Prc, P ~ Q implies Tr(P) = Tr(Q).

o Assume that P ~ @ but (w.lo.g.) we Tr(P)\ Tr(Q).

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Strong Bisimulation Implies Trace Equivalence

Definition (Trace language; repetition)

The trace language of P € Pre is given by
Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'}.

For every P,Q € Prc, P ~ Q implies Tr(P) = Tr(Q).

Proof.

o Assume that P ~ @ but (w.lo.g.) we Tr(P)\ Tr(Q).
o Let v € Act* be the longest prefix of w such that v € Tr(Q)
(i.e., w = vau for some a € Act and u € Act™).

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Strong Bisimulation Implies Trace Equivalence

Definition (Trace language; repetition)

The trace language of P € Pre is given by
Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'}.

For every P,Q € Prc, P ~ Q implies Tr(P) = Tr(Q).

Proof.

o Assume that P ~ @ but (w.lo.g.) we Tr(P)\ Tr(Q).
o Let v € Act* be the longest prefix of w such that v € Tr(Q)
(i.e., w = vau for some a € Act and u € Act™).

«

o Let P', P" € Prc such that P — P’ -2 P”.

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Strong Bisimulation Implies Trace Equivalence

Definition (Trace language; repetition)

The trace language of P € Pre is given by
Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'}.

For every P,Q € Prc, P ~ Q implies Tr(P) = Tr(Q).

Proof.

o Assume that P ~ @ but (w.lo.g.) we Tr(P)\ Tr(Q).

o Let v € Act* be the longest prefix of w such that v € Tr(Q)
(i.e., w = vau for some a € Act and u € Act™).

o Let P', P" € Prc such that P — P’ -2 P”.

@ Since P ~ Q there exists Q' € Prc such that Q —— @’ and

P’ ~ @' (by induction on |v|).

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Strong Bisimulation Implies Trace Equivalence

Definition (Trace language; repetition)

The trace language of P € Pre is given by
Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'}.

For every P,Q € Prc, P ~ Q implies Tr(P) = Tr(Q).

Proof.

o Assume that P ~ @ but (w.lo.g.) we Tr(P)\ Tr(Q).

o Let v € Act* be the longest prefix of w such that v € Tr(Q)
(i.e., w = vau for some a € Act and u € Act™).

o Let P', P" € Prc such that P — P’ -2 P”.

@ Since P ~ Q there exists Q' € Prc such that Q —— @’ and
P’ ~ @' (by induction on |v|).

o But we have that P’ = P” whereas Q' /— 4

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

	Repetition: Deadlocks
	Definition of Strong Bisimulation
	Properties of Strong Bisimulation

