

Modeling Concurrent and Probabilistic Systems

Lecture 5: Strong Bisimulation

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/mcps09/>

Summer Semester 2009

- 1 Repetition: Deadlocks
- 2 Definition of Strong Bisimulation
- 3 Properties of Strong Bisimulation

Definition (Deadlock)

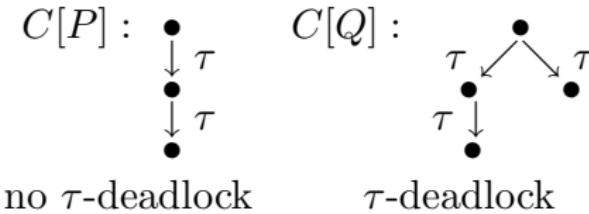
Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w} Q$ and $Q \not\rightarrow$. Then Q is called a **w -deadlock** of P .

- Thus $P := a.b.\text{nil} + a.\text{nil}$ has an **a -deadlock**, in contrast to $Q := a.b.\text{nil}$.
- Such properties are important since it can be crucial that a certain communication is **eventually possible**.
- We therefore extend our set of postulates: our semantic equivalence \cong should
 - ① identify processes with identical LTSs;
 - ② imply trace equivalence;
 - ③ be a congruence; and
 - ④ be **deadlock sensitive**, i.e., if $P \cong Q$ and if P has a w -deadlock, then Q has a w -deadlock (and vice versa, by equivalence).

Repetition: Deadlocks II

The combination of congruence and deadlock sensitivity also excludes the following equivalence:

If $P \cong Q$, by congruence this equivalence should hold in every context. But $C[\cdot] := \text{new } a, b, c (\bar{a}.\bar{b}.\text{nil} \parallel \cdot)$ yields the following conflict:



Remarks:

- Another motivation: elevator control with $a = \text{"call elevator"}$, $b = \text{"choose 1st floor"}$, $c = \text{"choose 2nd floor"}$,
- P and Q are obviously trace equivalent

- 1 Repetition: Deadlocks
- 2 Definition of Strong Bisimulation
- 3 Properties of Strong Bisimulation

Observation: equivalence should be deadlock sensitive

⇒ needs to take **branching structure** of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

$P, Q \in Prc$ are equivalent iff, for every $\alpha \in Act$, every α -successor of P is equivalent to some α -successor of Q , and vice versa.

- First version ignores special function of silent action τ
(⇒ *weak bisimulation*)
- Unidirectional version considered later (⇒ *simulation*)

Observation: equivalence should be deadlock sensitive

⇒ needs to take **branching structure** of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

$P, Q \in Prc$ are equivalent iff, for every $\alpha \in Act$, every α -successor of P is equivalent to some α -successor of Q , and vice versa.

- First version ignores special function of silent action τ
(⇒ *weak bisimulation*)
- Unidirectional version considered later (⇒ *simulation*)

Observation: equivalence should be deadlock sensitive

⇒ needs to take **branching structure** of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

$P, Q \in Prc$ are equivalent iff, for every $\alpha \in Act$, every α -successor of P is equivalent to some α -successor of Q , and vice versa.

- First version ignores special function of silent action τ
(⇒ *weak bisimulation*)
- Unidirectional version considered later (⇒ *simulation*)

Definition 5.1 (Strong bisimulation)

A relation $\rho \subseteq Prc \times Prc$ is called a **strong bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,

- ① $P \xrightarrow{\alpha} P' \implies \text{ex. } Q' \in Prc \text{ such that } Q \xrightarrow{\alpha} Q' \text{ and } P' \rho Q'$
- ② $Q \xrightarrow{\alpha} Q' \implies \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{\alpha} P' \text{ and } P' \rho Q'$

$P, Q \in Prc$ are called **strongly bisimilar** (notation: $P \sim Q$) if there exists a strong bisimulation ρ such that $P\rho Q$.

Theorem 5.2

\sim is an equivalence relation.

Proof.

on the board

Definition 5.1 (Strong bisimulation)

A relation $\rho \subseteq Prc \times Prc$ is called a **strong bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,

- ① $P \xrightarrow{\alpha} P' \implies \text{ex. } Q' \in Prc \text{ such that } Q \xrightarrow{\alpha} Q' \text{ and } P' \rho Q'$
- ② $Q \xrightarrow{\alpha} Q' \implies \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{\alpha} P' \text{ and } P' \rho Q'$

$P, Q \in Prc$ are called **strongly bisimilar** (notation: $P \sim Q$) if there exists a strong bisimulation ρ such that $P\rho Q$.

Theorem 5.2

\sim is an equivalence relation.

Proof.

on the board

Definition of Strong Bisimulation II

Definition 5.1 (Strong bisimulation)

A relation $\rho \subseteq Prc \times Prc$ is called a **strong bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,

- ① $P \xrightarrow{\alpha} P' \implies \text{ex. } Q' \in Prc \text{ such that } Q \xrightarrow{\alpha} Q' \text{ and } P' \rho Q'$
- ② $Q \xrightarrow{\alpha} Q' \implies \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{\alpha} P' \text{ and } P' \rho Q'$

$P, Q \in Prc$ are called **strongly bisimilar** (notation: $P \sim Q$) if there exists a strong bisimulation ρ such that $P\rho Q$.

Theorem 5.2

\sim is an equivalence relation.

Proof.

on the board

Examples I

Example 5.3

(on the board)

1

$$\begin{array}{ccc} P & \sim & Q_1 \\ \circlearrowleft & & a \downarrow \uparrow a \\ a & & Q_2 \end{array}$$

2

$$\begin{array}{ccc} P & \not\sim & Q \\ \downarrow a & & a \swarrow \searrow a \\ P_1 & & Q_1 \quad Q_3 \\ b \swarrow \searrow c & & b \downarrow \quad \downarrow c \\ P_2 \quad P_3 & & Q_2 \quad Q_4 \end{array}$$

(remember: $Tr(P) = Tr(Q)$)

Examples I

Example 5.3

(on the board)

1

$$\begin{array}{ccc} P & \sim & Q_1 \\ \circlearrowleft & & a \downarrow \uparrow a \\ a & & Q_2 \end{array}$$

2

$$\begin{array}{ccc} P & \not\sim & Q \\ \downarrow a & & a \swarrow \searrow a \\ P_1 & & Q_1 \quad Q_3 \\ b \swarrow \searrow c & & b \downarrow \quad \downarrow c \\ P_2 \quad P_3 & & Q_2 \quad Q_4 \end{array}$$

(remember: $Tr(P) = Tr(Q)$)

Example 5.4

Binary semaphore

(controls exclusive access to two instances of a resource)

Sequential definition:

$$Sem_0(get, put) = get.Sem_1(get, put)$$

$$Sem_1(get, put) = get.Sem_2(get, put) + put.Sem_0(get, put)$$

$$Sem_2(get, put) = put.Sem_1(get, put)$$

Parallel definition:

$$S(get, put) = S_0(get, put) \parallel S_0(get, put)$$

$$S_0(get, put) = get.S_1(get, put)$$

$$S_1(get, put) = put.S_0(get, put)$$

Proposition: $Sem_0(get, put) \sim S(get, put)$ (see 3rd ex. sheet)

Example 5.5

Two-place buffer

Sequential definition:

$$B_0(in, out) = in.B_1(in, out)$$

$$B_1(in, out) = \overline{out}.B_0(in, out) + in.B_2(in, out)$$

$$B_2(in, out) = \overline{out}.B_1(in, out)$$

Parallel definition:

$$B_{\parallel}(in, out) = \text{new com } (B(in, com) \parallel B(com, out))$$

$$B(in, out) = in.\overline{out}.B(in, out)$$

Proposition: $B_0(in, out) \not\sim B_{\parallel}(in, out)$ (see 3rd ex. sheet)

- 1 Repetition: Deadlocks
- 2 Definition of Strong Bisimulation
- 3 Properties of Strong Bisimulation

It remains to show that strong bisimulation has the required properties of a process equivalence:

- ① Identification of processes with **identical LTSs**:
since the definition of strong bisimulation directly relies on the transition relation, processes with identical transition trees are clearly strongly bisimilar
- ② Implication of **trace equivalence**: following slides
- ③ **CCS congruence**: following slides
- ④ **Deadlock sensitivity**: following slides

It remains to show that strong bisimulation has the required properties of a process equivalence:

- ① Identification of processes with **identical LTSs**:
since the definition of strong bisimulation directly relies on the transition relation, processes with identical transition trees are clearly strongly bisimilar
- ② Implication of **trace equivalence**: following slides
- ③ **CCS congruence**: following slides
- ④ **Deadlock sensitivity**: following slides

Definition (Trace language; repetition)

The **trace language** of $P \in Prc$ is given by

$$Tr(P) := \{w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P'\}.$$

Theorem 5.6

For every $P, Q \in Prc$, $P \sim Q$ implies $Tr(P) = Tr(Q)$.

Proof.

- Assume that $P \sim Q$ but $\exists w \in Act^* \exists P' \in Tr(P) \setminus Tr(Q)$
- Let $w \in Act^*$ be the longest prefix of w such that $w \in Tr(P)$
(i.e. $w = u$ for some $u \in Act^*$ and $w \in Tr(P)$)
- Let $P' \in Tr(P)$ such that $P \xrightarrow{w} P'$
- Since $P \sim Q$ there is a bisimulation $\beta: P \rightarrow Q$ with $P \xrightarrow{w} P' \xrightarrow{\beta} Q$
- Since w is the longest prefix of w such that $w \in Tr(P)$, $w \in Tr(Q)$
- This means that $P' \xrightarrow{\beta} Q$ (by induction on w)
- This means that $P \xrightarrow{w} Q$ (by induction on w)

Definition (Trace language; repetition)

The **trace language** of $P \in Prc$ is given by

$$Tr(P) := \{w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P'\}.$$

Theorem 5.6

For every $P, Q \in Prc$, $P \sim Q$ implies $Tr(P) = Tr(Q)$.

Proof.

- Assume $P \sim Q$ and let $w \in Tr(P)$. Then there exists $P' \in Prc$ such that $P \xrightarrow{w} P'$. Since $P \sim Q$, there exists $Q' \in Prc$ such that $Q \xrightarrow{w} Q'$. Since $P \xrightarrow{w} P'$, there exists $P'' \in Prc$ such that $P \xrightarrow{w} P'' \xrightarrow{w} P'$. Since $Q \xrightarrow{w} Q'$, there exists $Q'' \in Prc$ such that $Q \xrightarrow{w} Q'' \xrightarrow{w} Q'$. Since $P \xrightarrow{w} P'' \xrightarrow{w} P'$ and $Q \xrightarrow{w} Q'' \xrightarrow{w} Q'$, we have $P \xrightarrow{w} P' \sim Q \xrightarrow{w} Q'$. Since $Tr(P) = \{w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P'\}$ and $Tr(Q) = \{w \in Act^* \mid \text{ex. } Q' \in Prc \text{ such that } Q \xrightarrow{w} Q'\}$, we have $w \in Tr(P) \iff w \in Tr(Q)$. Therefore, $Tr(P) = Tr(Q)$.

Definition (Trace language; repetition)

The **trace language** of $P \in Prc$ is given by

$$Tr(P) := \{w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P'\}.$$

Theorem 5.6

For every $P, Q \in Prc$, $P \sim Q$ implies $Tr(P) = Tr(Q)$.

Proof.

- Assume that $P \sim Q$ but (w.l.o.g.) $w \in Tr(P) \setminus Tr(Q)$.
- Let $v \in Act^*$ be the longest prefix of w such that $v \in Tr(Q)$ (i.e., $w = v\alpha u$ for some $\alpha \in Act$ and $u \in Act^*$).
- Let $P', P'' \in Prc$ such that $P \xrightarrow{v} P' \xrightarrow{\alpha} P''$.
- Since $P \sim Q$ there exists $Q' \in Prc$ such that $Q \xrightarrow{v} Q'$ and $P' \sim Q'$ (by induction on $|v|$).
- But we have that $P' \xrightarrow{\alpha} P''$ whereas $Q' \not\xrightarrow{\alpha} \emptyset$

□

Definition (Trace language; repetition)

The **trace language** of $P \in Prc$ is given by

$$Tr(P) := \{w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P'\}.$$

Theorem 5.6

For every $P, Q \in Prc$, $P \sim Q$ implies $Tr(P) = Tr(Q)$.

Proof.

- Assume that $P \sim Q$ but (w.l.o.g.) $w \in Tr(P) \setminus Tr(Q)$.
- Let $v \in Act^*$ be the longest prefix of w such that $v \in Tr(Q)$ (i.e., $w = v\alpha u$ for some $\alpha \in Act$ and $u \in Act^*$).
- Let $P', P'' \in Prc$ such that $P \xrightarrow{v} P' \xrightarrow{\alpha} P''$.
- Since $P \sim Q$ there exists $Q' \in Prc$ such that $Q \xrightarrow{v} Q'$ and $P' \sim Q'$ (by induction on $|v|$).
- But we have that $P' \xrightarrow{\alpha} P''$ whereas $Q' \not\xrightarrow{\alpha} \emptyset$

□

Definition (Trace language; repetition)

The **trace language** of $P \in Prc$ is given by

$$Tr(P) := \{w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P'\}.$$

Theorem 5.6

For every $P, Q \in Prc$, $P \sim Q$ implies $Tr(P) = Tr(Q)$.

Proof.

- Assume that $P \sim Q$ but (w.l.o.g.) $w \in Tr(P) \setminus Tr(Q)$.
- Let $v \in Act^*$ be the longest prefix of w such that $v \in Tr(Q)$ (i.e., $w = v\alpha u$ for some $\alpha \in Act$ and $u \in Act^*$).
- Let $P', P'' \in Prc$ such that $P \xrightarrow{v} P' \xrightarrow{\alpha} P''$.
- Since $P \sim Q$ there exists $Q' \in Prc$ such that $Q \xrightarrow{v} Q'$ and $P' \sim Q'$ (by induction on $|v|$).
- But we have that $P' \xrightarrow{\alpha} P''$ whereas $Q' \not\xrightarrow{\alpha} \emptyset$

□

Definition (Trace language; repetition)

The **trace language** of $P \in Prc$ is given by

$$Tr(P) := \{w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P'\}.$$

Theorem 5.6

For every $P, Q \in Prc$, $P \sim Q$ implies $Tr(P) = Tr(Q)$.

Proof.

- Assume that $P \sim Q$ but (w.l.o.g.) $w \in Tr(P) \setminus Tr(Q)$.
- Let $v \in Act^*$ be the longest prefix of w such that $v \in Tr(Q)$ (i.e., $w = v\alpha u$ for some $\alpha \in Act$ and $u \in Act^*$).
- Let $P', P'' \in Prc$ such that $P \xrightarrow{v} P' \xrightarrow{\alpha} P''$.
- Since $P \sim Q$ there exists $Q' \in Prc$ such that $Q \xrightarrow{v} Q'$ and $P' \sim Q'$ (by induction on $|v|$).
- But we have that $P' \xrightarrow{\alpha} P''$ whereas $Q' \not\xrightarrow{\alpha} \emptyset$

□

Strong Bisimulation Implies Trace Equivalence

Definition (Trace language; repetition)

The **trace language** of $P \in Prc$ is given by

$$Tr(P) := \{w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P'\}.$$

Theorem 5.6

For every $P, Q \in Prc$, $P \sim Q$ implies $Tr(P) = Tr(Q)$.

Proof.

- Assume that $P \sim Q$ but (w.l.o.g.) $w \in Tr(P) \setminus Tr(Q)$.
- Let $v \in Act^*$ be the longest prefix of w such that $v \in Tr(Q)$ (i.e., $w = v\alpha u$ for some $\alpha \in Act$ and $u \in Act^*$).
- Let $P', P'' \in Prc$ such that $P \xrightarrow{v} P' \xrightarrow{\alpha} P''$.
- Since $P \sim Q$ there exists $Q' \in Prc$ such that $Q \xrightarrow{v} Q'$ and $P' \sim Q'$ (by induction on $|v|$).
- But we have that $P' \xrightarrow{\alpha} P''$ whereas $Q' \not\xrightarrow{\alpha} \emptyset$

□