Modeling Concurrent and Probabilistic Systems

Lecture 5: Strong Bisimulation

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

Summer Semester 2009

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps09/

@ Repetition: Deadlocks

Rm Modeling Concurrent and Probabilistic S Summer Semester

Repetition: Deadlocks I

Definition (Deadlock)

Let P,Q € Prc and w € Act* such that P — Q and Q /—.
Then @ is called a w-deadlock of P.

@ Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q@ := a.b.nil.
@ Such properties are important since it can be crucial that a certain
communication is eventually possible.
@ We therefore extend our set of postulates: our semantic
equivalence = should
@ identify processes with identical LTSs;
© imply trace equivalence;
© be a congruence; and

@ Dbe deadlock sensitive, i.e., if P = @ and if P has a w-deadlock, then
Q@ has a w-deadlock (and vice versa, by equivalence).

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Repetition: Deadlocks 11

The combination of congruence and deadlock sensitivity also excludes
the following equivalence:

P: l.(l 2 Q: a,/.\a

[4 [[]
b,/ \c bl lc
[] [[] []
If P = Q, by congruence this equivalence should hold in every context.
But C[] := newa, b, c (@.b.nil || -) yields the following conflict:
C|P]: ClQ): °
P CEN
L] []

.
T Tl
[]

0<—0<—0

no 7-deadlock 7-deadlock

Remarks:
@ Another motivation: elevator control with
a = “call elevator”, b = “choose 1st floor”, ¢ = “choose 2nd floor”,
@ P and @ are obviously trace equivalent

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

© Definition of Strong Bisimulation

Rm Modeling Concurrent and Pro ilisti 1 Summer Semester

Definition of Strong Bisimulation I

Observation: equivalence should be deadlock sensitive
—> needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P,Q € Prc are equivalent iff, for every a € Act, every a-successor of P
is equivalent to some a-successor of (), and vice versa.

o First version ignores special function of silent action 7
(= weak bisimulation)

@ Unidirectional version considered later (= simulation)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Definition of Strong Bisimulation II

Definition 5.1 (Strong bisimulation)

A relation p C Pre x Pre is called a strong bisimulation if Pp@Q implies,
for every a € Act,

Q@ P55 P — ex. Q' € Presuch that Q — Q' and P/ pQ’
Q@ Q5 Q = ex. P € Presuch that P - P’ and P'pQ’

P,Q € Prc are called strongly bisimilar (notation: P ~ Q) if there
exists a strong bisimulation p such that PpQ.

v

~ 1s an equivalence relation.
on the board O

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Examples I
Example 5.3

(on the board)
o
P ~
O alla
a Q2
o
P4 Q
la a/\, a
P1 Ql QB
b,/ \, c bl lec
P, P Q2 Q4
(remember: Tr(P) = Tr(Q))

Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Examples I1

Example 5.4

Binary semaphore
(controls exclusive access to two instances of a resource)
Sequential definition:

Semg(get,put) = get.Semi(get, put)
Semq(get,put) = get.Sema(get, put) + put.Semq(get, put)
Semo(get,put) = put.Semq(get, put)

Parallel definition:

S(get,put) = So(get, put) || So(get, put)
So(get,put) = get.Si(get, put)
Si(get,put) = put.So(get, put)

Proposition: Semg(get, put) ~ S(get, put) (see 3rd ex. sheet)

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Examples 111

Example 5.5

Two-place buffer
Sequential definition:

By(in, out) = in.Bi(in, out)
Bi(in,out) = out.By(in, out) + in.By(in, out)
By (in, out) = out.Byi(in, out)

Parallel definition:

By (in, out) = new com (B(in,com) || B(com, out))

B(in,out) = in.out.B(in, out)

Proposition: By(in, out) % Bj(in, out) (see 3rd ex. sheet)

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 10

© Properties of Strong Bisimulation

Rm Modeling Concurrent and Pro ilisti 1 Summer Semester

Properties of Strong Bisimulation

It remains to show that strong bisimulation has the required properties
of a process equivalence:

@ Identification of processes with identical L'T'Ss:

since the definition of strong bisimulation directly relies on the
transition relation, processes with identical transition trees are
clearly strongly bisimilar

Implication of trace equivalence: following slides

CCS congruence: following slides

© 00

Deadlock sensitivity: following slides

Rm Modeling Concurrent and Probabilistic Systems Summer Semester 2009

Strong Bisimulation Implies Trace Equivalence

Definition (Trace language; repetition)

The trace language of P € Pre is given by
Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'}.

For every P,Q € Prc, P ~ Q implies Tr(P) = Tr(Q).

Proof.

o Assume that P ~ @ but (w.lo.g.) we Tr(P)\ Tr(Q).

o Let v € Act* be the longest prefix of w such that v € Tr(Q)
(i.e., w = vau for some a € Act and u € Act™).

o Let P', P" € Prc such that P — P’ -2 P”.

@ Since P ~ Q there exists Q' € Prc such that Q —— @’ and
P’ ~ @' (by induction on |v|).

o But we have that P’ = P” whereas Q' /— 4

m' Modeling Concurrent and Probabilistic Systems Summer Semester 2009

	Repetition: Deadlocks
	Definition of Strong Bisimulation
	Properties of Strong Bisimulation

