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Repetition: Deadlocks I

Definition (Deadlock)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w

−→ Q and Q 6−→.
Then Q is called a w-deadlock of P .

Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q := a.b.nil.

Such properties are important since it can be crucial that a certain
communication is eventually possible.

We therefore extend our set of postulates: our semantic
equivalence ∼= should

1 identify processes with identical LTSs;
2 imply trace equivalence;
3 be a congruence; and
4 be deadlock sensitive, i.e., if P ∼= Q and if P has a w-deadlock, then

Q has a w-deadlock (and vice versa, by equivalence).
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Repetition: Deadlocks II

The combination of congruence and deadlock sensitivity also excludes
the following equivalence:

P : •
↓ a
•

b ւց c
• •

6∼= Q : •
a ւց a
• •

b ↓ ↓ c
• •

If P ∼= Q, by congruence this equivalence should hold in every context.
But C[·] := new a, b, c (a.b.nil ‖ ·) yields the following conflict:

C[P ] : •
↓ τ
•
↓ τ
•

C[Q] : •
τ ւց τ
• •

τ ↓
•

no τ -deadlock τ -deadlock

Remarks:

Another motivation: elevator control with
a = “call elevator”, b = “choose 1st floor”, c = “choose 2nd floor”,

P and Q are obviously trace equivalent
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Definition of Strong Bisimulation I

Observation: equivalence should be deadlock sensitive
=⇒ needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P,Q ∈ Prc are equivalent iff, for every α ∈ Act , every α-successor of P

is equivalent to some α-successor of Q, and vice versa.

First version ignores special function of silent action τ

( =⇒ weak bisimulation)

Unidirectional version considered later ( =⇒ simulation)
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Definition of Strong Bisimulation II

Definition 5.1 (Strong bisimulation)

A relation ρ ⊆ Prc ×Prc is called a strong bisimulation if PρQ implies,
for every α ∈ Act ,

1 P
α

−→ P ′ =⇒ ex. Q′ ∈ Prc such that Q
α

−→ Q′ and P ′ρQ′

2 Q
α

−→ Q′ =⇒ ex. P ′ ∈ Prc such that P
α

−→ P ′ and P ′ρQ′

P,Q ∈ Prc are called strongly bisimilar (notation: P ∼ Q) if there
exists a strong bisimulation ρ such that PρQ.

Theorem 5.2

∼ is an equivalence relation.

Proof.

on the board
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Examples I

Example 5.3

(on the board)

1

P

	

a

∼ Q1

a ↓↑ a

Q2

2

P

↓ a

P1

b ւց c

P2 P3

6∼ Q

a ւց a

Q1 Q3

b ↓ ↓ c

Q2 Q4

(remember: Tr(P ) = Tr(Q))
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Examples II

Example 5.4

Binary semaphore
(controls exclusive access to two instances of a resource)
Sequential definition:

Sem0(get , put) = get .Sem1(get , put)

Sem1(get , put) = get .Sem2(get , put) + put .Sem0(get , put)

Sem2(get , put) = put .Sem1(get , put)

Parallel definition:

S(get , put) = S0(get , put) ‖ S0(get , put)

S0(get , put) = get .S1(get , put)

S1(get , put) = put .S0(get , put)

Proposition: Sem0(get , put) ∼ S(get , put) (see 3rd ex. sheet)
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Examples III

Example 5.5

Two-place buffer
Sequential definition:

B0(in, out) = in.B1(in , out)

B1(in, out) = out .B0(in , out) + in.B2(in, out)

B2(in, out) = out .B1(in , out)

Parallel definition:

B‖(in, out) = new com (B(in, com) ‖ B(com , out))

B(in, out) = in.out .B(in, out)

Proposition: B0(in, out) 6∼ B‖(in, out) (see 3rd ex. sheet)
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Properties of Strong Bisimulation

It remains to show that strong bisimulation has the required properties
of a process equivalence:

1 Identification of processes with identical LTSs:
since the definition of strong bisimulation directly relies on the
transition relation, processes with identical transition trees are
clearly strongly bisimilar

2 Implication of trace equivalence: following slides

3 CCS congruence: following slides

4 Deadlock sensitivity: following slides
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Strong Bisimulation Implies Trace Equivalence

Definition (Trace language; repetition)

The trace language of P ∈ Prc is given by
Tr(P ) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P

w

−→ P ′}.

Theorem 5.6

For every P,Q ∈ Prc, P ∼ Q implies Tr(P ) = Tr(Q).

Proof.

Assume that P ∼ Q but (w.l.o.g.) w ∈ Tr(P ) \ Tr(Q).
Let v ∈ Act∗ be the longest prefix of w such that v ∈ Tr(Q)
(i.e., w = vαu for some α ∈ Act and u ∈ Act∗).
Let P ′, P ′′ ∈ Prc such that P

v

−→ P ′ α

−→ P ′′.
Since P ∼ Q there exists Q′ ∈ Prc such that Q

v

−→ Q′ and
P ′ ∼ Q′ (by induction on |v|).
But we have that P ′ α

−→ P ′′ whereas Q′ 6
α

−→  
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