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Repetition: Definition of Strong Bisimulation

Definition (Strong bisimulation)

A relation ρ ⊆ Prc ×Prc is called a strong bisimulation if PρQ implies,
for every α ∈ Act ,

1 P
α

−→ P ′ =⇒ ex. Q′ ∈ Prc such that Q
α

−→ Q′ and P ′ρQ′

2 Q
α

−→ Q′ =⇒ ex. P ′ ∈ Prc such that P
α

−→ P ′ and P ′ρQ′

P,Q ∈ Prc are called strongly bisimilar (notation: P ∼ Q) if there
exists a strong bisimulation ρ such that PρQ.

Theorem

∼ is an equivalence relation.

Proof.

on the board
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Congruence Property of Strong Bisimulation

Definition (CCS congruence)

An equivalence relation ∼= ⊆ Prc × Prc is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P ∼= Q then

α.P ∼= α.Q

P + R ∼= Q + R

R + P ∼= R + Q

P ‖ R ∼= Q ‖ R

R ‖ P ∼= R ‖ Q

new aP ∼= new aQ
for every α ∈ Act , R ∈ Prc, and a ∈ N .

Theorem 7.3

∼ is a CCS congruence.

Proof.

on the board
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Deadlock Sensitivity of Strong Bisimulation

Definition (Deadlock)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w

−→ Q and Q 6−→. Then Q is
called a w-deadlock of P .
An equivalence relation ∼= ⊆ Prc ×Prc is called deadlock sensitive if for
every P ∼= Q such that P has a w-deadlock, Q also has a w-deadlock.

Theorem 7.4

∼ is deadlock sensitive.

Proof.

on the board
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The Problem

We now show that the word problem for strong bisimulation

Problem (Word problem for strong bisimulation)

Given: P,Q ∈ Prc

Question: P ∼ Q?

is decidable for finite-state processes (i.e., for those with
|S (P )|, |S (Q)| < ∞ where S (P ) := {P ′ ∈ Prc | P −→ P ′})

(in general it is undecidable – see 4th ex. sheet).

To this aim we give an algorithm which iteratively partitions the state
set of an LTS such that the single blocks correspond to the
∼-equivalence classes.
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The Partitioning Algorithm I

Theorem 7.1 (Partitioning algorithm for ∼)

Input: LTS (S ,Act ,−→) (S finite)

Procedure: 1 Start with initial partition Π := {S}
2 Let B ∈ Π be a block and α ∈ Act an action
3 For every P ∈ B, let

α(P ) := {C ∈ Π | ex. P ′ ∈ C with P
α

−→ P ′}

be the set of P ’s α-successor blocks
4 Partition B =

⋃
k

i=1 Bi such that

P,Q ∈ Bi ⇐⇒ α(P ) = α(Q) for every α ∈ Act
5 Let Π := (Π \ {B}) ∪ {B1, . . . , Bk}
6 Continue with (2) until Π becomes stable

Output: Partition Π̂ of S

Then, for every P,Q ∈ S,

P ∼ Q ⇐⇒ ex. B ∈ Π̂ with P,Q ∈ B
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The Partitioning Algorithm II

Remark: if states from two disjoint LTSs (S1,Act1,−→1) and
(S2,Act2,−→2) (where S1 ∩ S2 = ∅) are to be compared, their union
(S1 ∪ S2,Act1 ∪ Act2,−→1 ∪ −→2) is chosen as input (here usually
Act1 = Act2)

Example 7.2

Binary semaphore (on the board)

Proof.

(Theorem 7.1; on the board)
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Summary: Properties of Strong Bisimulation

Properties of strong bisimulation
1 ∼ is an equivalence relation

2 LTS (P ) = LTS (Q) =⇒ P ∼ Q

3 P ∼ Q =⇒ Tr(P ) = Tr(Q)

4 ∼ is a CCS congruence

5 ∼ is deadlock sensitive

6 ∼ is decidable for finite-state processes
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Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too
strong (example: extending a system by new features)

Definition 7.3 (Strong simulation)

A relation ρ ⊆ Prc ×Prc is called a strong simulation if, whenever PρQ

and P
α

−→ P ′, there exists Q′ ∈ Prc such that Q
α

−→ Q′ and P ′ρQ′.
We say that Q strongly simulates P if there exists a strong simulation
ρ such that PρQ.

Thus: if Q strongly simulates P , then whatever transition path P

takes, Q can match it by a path which retains all of P ’s options.

Example 7.4

P

a ւց a

P1 P3

b ↓ ↓ c

P2 P4

Q

↓ a

Q1

b ւց c

Q2 Q3

Q strongly simulates P ,
but not vice versa
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Strong Simulation and Bisimulation

Corollary 7.5

If P ∼ Q, then Q strongly simulates P , and P strongly simulates Q.

Proof.

A strong bisimulation ρ ⊆ Prc × Prc for P ∼ Q is a strong simulation
for both directions.

Caveat: the converse does generally not hold!

Example 7.6

P

a ւց a

P1 P3

b ↓
P2

Q

↓ a

Q1

↓ b

Q2

Q simulates P and vice versa,
but P 6∼ Q
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