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Repetition: Definition of Strong Bisimulation

Definition (Strong bisimulation)

A relation ρ ⊆ Prc ×Prc is called a strong bisimulation if PρQ implies,
for every α ∈ Act ,

1 P
α

−→ P ′ =⇒ ex. Q′ ∈ Prc such that Q
α

−→ Q′ and P ′ρQ′

2 Q
α

−→ Q′ =⇒ ex. P ′ ∈ Prc such that P
α

−→ P ′ and P ′ρQ′

P,Q ∈ Prc are called strongly bisimilar (notation: P ∼ Q) if there
exists a strong bisimulation ρ such that PρQ.
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Repetition: Properties of Strong Bisimulation

Properties of strong bisimulation
1 ∼ is an equivalence relation

2 LTS (P ) = LTS (Q) =⇒ P ∼ Q

3 P ∼ Q =⇒ Tr(P ) = Tr(Q)

4 ∼ is a CCS congruence

5 ∼ is deadlock sensitive

6 ∼ is decidable for finite-state processes
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Repetition: Strong Simulation and Bisimulation

Corollary

If P ∼ Q, then Q strongly simulates P , and P strongly simulates Q.

Proof.

A strong bisimulation ρ ⊆ Prc × Prc for P ∼ Q is a strong simulation
for both directions.

Caveat: the converse does generally not hold!

Example

P

a ւց a

P1 P3

b ↓
P2

Q

↓ a

Q1

↓ b

Q2

Q simulates P and vice versa,
but P 6∼ Q
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Inadequacy of Strong Bisimulation

Observation: requirement of exact matching sometimes too strong

Example 8.1

Sequential and parallel two-place buffer:

B0(in, out) = in.B1(in, out)
B1(in, out) = out .B0(in , out)+

in.B2(in, out)
B2(in, out) = out .B1(in , out)

•
in ↓↑ out

•
in ↓↑ out

•

6∼

B‖(in, out) = new com (B(in, com) ‖
B(com , out))

B(in, out) = in.out .B(in, out)

•
in ւտ out
•

τ

−→ •
out տւ in

•
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Definition of Weak Bisimulation I

Idea: abstract from silent actions

Definition 8.2

Given w ∈ Act∗, ŵ ∈ (N ∪ N )∗ denotes the sequence of
non-τ -actions in w (in particular, τ̂n = ε for every n ∈ N).

For w = α1 . . . αn ∈ Act∗ and P,Q ∈ Prc, we let

P
w

=⇒ Q ⇐⇒ P (
τ

−→)∗
α1−→ (

τ

−→)∗ . . . (
τ

−→)∗
αn−→ (

τ

−→)∗ Q

(and hence:
ε

=⇒ = (
τ

−→)∗).

A relation ρ ⊆ Prc × Prc is called a weak bisimulation if PρQ
implies, for every α ∈ Act ,

1 P
α

−→ P ′ =⇒ ex. Q′ ∈ Prc such that Q
bα

=⇒ Q′ and P ′ρQ′

2 Q
α

−→ Q′ =⇒ ex. P ′ ∈ Prc such that P
bα

=⇒ P ′ and P ′ρQ′

P,Q ∈ Prc are called weakly bisimilar (notation: P ≈ Q) if there
exists a weak bisimulation ρ such that PρQ.
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Definition of Weak Bisimulation II

Remark: each of the two clauses in the definition of weak bisimulation
subsumes two cases:

P
α

−→ P ′ where α 6= τ

=⇒ ex. Q′ ∈ Prc such that Q (
τ

−→)∗
α

−→ (
τ

−→)∗ Q′ and P ′ρQ′

P
τ

−→ P ′

=⇒ ex. Q′ ∈ Prc such that Q (
τ

−→)∗ Q′ and P ′ρQ′

(where Q′ = Q is admissible)

Example 8.3

1 Sequential and parallel two-place buffer

2 A counterexample

(on the board)
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Properties of Weak Bisimulation I

Theorem 8.4

≈ is an equivalence relation.

Proof.

in analogy to the corresponding proof for ∼ (Theorem 5.2)

In particular, the following characterization is still valid:

≈ =
⋃

{ρ | ρ weak bisimulation},

i.e., ≈ is again itself a weak bisimulation.
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Properties of Weak Bisimulation II

Moreover Definition 8.2 implies that every strong bisimulation is also a

weak one (since, for every α ∈ Act ,
α

−→ ⊆
bα

=⇒). This yields the desired
connection to LTS equivalence: for every P,Q ∈ Prc,

LTS (P ) = LTS (Q) =⇒ P ∼ Q =⇒ P ≈ Q.

Furthermore trace equivalence is implied if the definition is adapted:

P ≈ Q =⇒ T̂r(P ) = T̂r(Q)

where T̂r(P ) := {ŵ | w ∈ Tr(P )} ⊆ (N ∪ N )∗.
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Properties of Weak Bisimulation III

Another important property is

Lemma 8.5

For every P ∈ Prc,

P ≈ τ.P

Proof.

We show that
ρ := {(P, τ.P )} ∪ idPrc

is a weak bisimulation:

1 let P
α

−→ P ′

=⇒ τ.P
τ

−→ P
α

−→ P ′

=⇒ τ.P
bα

=⇒ P ′ with P ′ρP ′ (since idPrc ⊆ ρ)

2 the only transition of τ.P is τ.P
τ

−→ P ;
it is simulated by P

ε

=⇒ P with PρP
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Properties of Weak Bisimulation IV

Using Lemma 8.5, however, we can show that ≈ is not a congruence:

It is true that b.nil ≈ τ.b.nil (Lemma 8.5)
but a.nil + b.nil 6≈ a.nil + τ.b.nil (Example 8.3(2))

The other operators are uncritical, i.e., weak bisimilarity is preserved
under prefixing, parallel composition, and restriction.
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Properties of Weak Bisimulation V

However deadlock sensitivity is guaranteed if τ -actions are
appropriately handled:

Theorem 8.6

Let P,Q ∈ Prc such that P ≈ Q. Then, for every w ∈ (N ∪ N )∗,

P
w

=⇒6−→ ⇐⇒ Q
w

=⇒6−→ .

Proof.

analogously to Theorem 6.3 (induction on |w|)
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Properties of Weak Bisimulation VI

Moreover we have:

Lemma 8.7

For every P,Q,R ∈ Prc,

1 P + Q ≈ Q + P

2 P + (Q + R) ≈ (P + Q) + R

3 P + nil ≈ P

4 P ‖ Q ≈ Q ‖ P

5 P ‖ (Q ‖ R) ≈ (P ‖ Q) ‖ R

6 P ‖ nil ≈ P

Proof.

similar to Lemma 6.1 (strong bisimulation; omitted)
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