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Repetition: Definition of Weak Bisimulation

Definition

Given w ∈ Act∗, ŵ ∈ (N ∪ N )∗ denotes the sequence of
non-τ -actions in w (in particular, τ̂n = ε for every n ∈ N).

For w = α1 . . . αn ∈ Act∗ and P,Q ∈ Prc, we let

P
w

=⇒ Q ⇐⇒ P (
τ

−→)∗
α1−→ (

τ
−→)∗ . . . (

τ
−→)∗

αn−→ (
τ

−→)∗ Q

(and hence:
ε

=⇒ = (
τ

−→)∗).

A relation ρ ⊆ Prc × Prc is called a weak bisimulation if PρQ
implies, for every α ∈ Act ,

1 P
α

−→ P ′ =⇒ ex. Q′ ∈ Prc such that Q
bα

=⇒ Q′ and P ′ρQ′

2 Q
α

−→ Q′ =⇒ ex. P ′ ∈ Prc such that P
bα

=⇒ P ′ and P ′ρQ′

P,Q ∈ Prc are called weakly bisimilar (notation: P ≈ Q) if there
exists a weak bisimulation ρ such that PρQ.
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Repetition: Properties of Weak Bisimulation

Properties
1 P ∼ Q =⇒ P ≈ Q

2 ≈ is an equivalence relation

3 LTS (P ) = LTS (Q) =⇒ P ≈ Q

4 P ≈ Q =⇒ T̂r(P ) = T̂r(Q)

5 ≈ is (non-τ) deadlock sensitive

6 For every P ∈ Prc, P ≈ τ.P

7 ≈ is not a congruence:

It is true that b.nil ≈ τ.b.nil

but a.nil + b.nil 6≈ a.nil + τ.b.nil
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Definition of Observation Congruence I

Goal: introduce an equivalence which has most of the desirable
properties of ≈ and which is preserved under all CCS operators

Definition 9.1

P,Q ∈ Prc are called observationally congruent (notation: P ≃ Q) if,
for every α ∈ Act ,

1 P
α

−→ P ′ =⇒ ex. Q′ ∈ Prc such that Q
α

=⇒ Q′ and P ′ ≈ Q′

2 Q
α

−→ Q′ =⇒ ex. P ′ ∈ Prc such that P
α

=⇒ P ′ and P ′ ≈ Q′

Remark: ≃ differs from ≈ only in the use of
α

=⇒ rather than
bα

=⇒, i.e.,
it requires τ -actions from P or Q to be simulated by at least one τ -step
in the other process. This only applies to the first step; the successors
just have to satisfy P ′ ≈ Q′ (and not P ′ ≃ Q′).
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Definition of Observation Congruence II

Example 9.2
1 Sequential and parallel two-place buffer:

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in ւտ out

Q2
τ

−→ Q3

out տւ in
Q4

P1 ≃ Q1 since P1 ≈ Q1 (cf. Example 8.3) and neither P1 nor Q1

has initial τ -steps

2 τ.a.nil 6≃ a.nil (since τ.b.nil
τ

−→ but b.nil 6
τ

−→)
=⇒ counterexample to congruence of ≈ does not apply

3 b.τ.nil ≃ b.nil (since τ.nil ≈ nil)
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Properties of Observation Congruence I

Corollary 9.3

For every P,Q ∈ Prc,

1 P ∼ Q =⇒ P ≃ Q

2 P ≃ Q =⇒ P ≈ Q

Proof.

1 since
α

−→ ⊆
α

=⇒ and ∼ ⊆ ≈

2 since
α

=⇒ ⊆
bα

=⇒

Remark: this implies that

processes with identical LTSs are ≃-equivalent,
≃-equivalent processes are (non-τ) trace equivalent, and
≃ is (non-τ) deadlock sensitive.

Exercise 5 shows that both inclusions are proper.
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Properties of Observation Congruence II

Theorem 9.4

≃ is a CCS congruence.

Proof.
1 “equivalence” part: see Theorem 9.6

2 “congruence” part: omitted
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Properties of Observation Congruence II

A characterization of ≃ in terms of ≈:

Theorem 9.5

For every P,Q ∈ Prc,

P ≃ Q ⇐⇒ P + R ≈ Q + R for every R ∈ Prc.

Proof.

on the board

Remark: together with Corollary 9.3 and Theorem 9.4, this shows
that ≃ is the largest congruence contained in ≈
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Properties of Observation Congruence III

Theorem 9.6

≃ is an equivalence relation.

Proof.

on the board
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Properties of Observation Congruence V

A characterization of ≈ in terms of ≃ (reversal of Theorem 9.5):

Theorem 9.7

For every P,Q ∈ Prc,

P ≈ Q ⇐⇒ P ≃ Q or P ≃ τ.Q or τ.P ≃ Q.

Proof.

see Exercise 5
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The Problem

We now show that the word problem for observation congruence

Problem (Word problem for observation congruence

Given: P,Q ∈ Prc

Question: P ≃ Q?

is decidable for finite-state processes (i.e., for those with
|S (P )|, |S (Q)| < ∞ where S (P ) := {P ′ ∈ Prc | P −→∗ P ′})

(in general it is undecidable).

Since the definition of ≃ directly relies on ≈ (cf. Def. 9.1), we first
extend the partitioning algorithm from ∼ (Theorem 7.1) to ≈.
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The Partitioning Algorithm I

Theorem 9.8 (Partitioning algorithm for ∼≈)

Input: LTS (S ,Act ,−→) (S finite)

Procedure: 1 Start with initial partition Π := {S}
2 Let B ∈ Π be a block and α ∈ Act an action
3 For every P ∈ B, let

α(P )α∗(P ) := {C ∈ Π | ex. P ′ ∈ C with P
α

−→
bα

=⇒ P ′}

be the set of P ’s α-successor blocks
4 Partition B =

∑
k

i=1 Bi such that

P,Q ∈ Bi ⇐⇒ α(P ) = α(Q)α∗(P ) =
α∗(Q) for every α ∈ Act

5 Let Π := (Π \ {B}) ∪ {B1, . . . , Bk}
6 Continue with (2) until Π is stable

Output: Partition Π̂ of S

Then, for every P,Q ∈ S,Modeling Concurrent and Probabilistic Systems Summer Semester 2009 16



The Partitioning Algorithm II

Remarks:

1 Since S is finite, α∗(P ) is effectively computable in step (3) of the
algorithm.

2 The ≈-partitioning algorithm can be interpreted as the application
of the ∼-partitioning algorithm to an appropriately modified LTS:

Theorem 9.8 for (S ,Act ,−→)
=̂ Theorem 7.1 for (S ,Act ,−→′)

where −→′ :=
⋃

α∈Act

bα
=⇒

Proof.

similar to Theorem 7.1 (∼-partitioning algorithm)
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Decidability of Observation Congruence

Since the definition of ≃ requires the weak bisimilarity of the
intermediate states after the first step, Theorem 9.8 yields the
decidability of ≃:

Theorem 9.9 (Decidability of ≃)

Let (S ,Act ,−→) and Π̂ as in Theorem 9.8. Then, for every P,Q ∈ S,
P ≃ Q ⇐⇒ α+(P ) = α+(Q) for every α ∈ Act

where α+(P ) := {C ∈ Π̂ | ex. P ′ ∈ C with P
α

=⇒ P ′}.

Proof.

omitted

Example 9.10

on the board

Modeling Concurrent and Probabilistic Systems Summer Semester 2009 18


	Repetition: Weak Bisimulation
	Definition of Observation Congruence
	Properties of Observation Congruence
	Decidability of Observation Congruence

