

Markovian process algebra

Lecture #22 of Modeling Concurrent and Probabilistic Systems

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl 2: Softwaremodeling and Verification

E-mail: katoen@cs.rwth-aachen.de

July 22, 2008

Overview Lecture #22

⇒ *Markovian process algebra*

- Interactive continuous-time Markov chains
- Markovian (weak) bisimulation revisited
- Sequential probabilistic processes
- Equational laws
- Parallel composition

Motivation

- Performance modeling is an art and requires experience
- Hierarchical modeling is complicated
 - ⇒ lack of *compositional* specification methods
- Isolation of performance modeling in the design process
 - ⇒ need for *integration* with qualitative methods

⇒ Use process algebra for modeling functional *and* quantitative aspects

⇒ main benefit: a single consistent system specification for analysis!

Interactive Markov chains

An *interactive Markov chain* is a triple $(S, Act, \rightarrow, \mathbf{R}, s_0)$ where

- S is a countable set of states and $s_0 \in S$ is the initial state
- Act is a set of actions, and
- $\rightarrow \subseteq S \times Act \times S$ is the set of interactive transitions
- $\mathbf{R} \in S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the rate function
 - notation: $s \xrightarrow{\lambda} s'$ whenever $\mathbf{R}(s, s') = \lambda > 0$
 - or differently: $\rightarrow \subseteq S \times \mathbb{R}_{\geq 0} \times S$ is the set of Markovian transitions

each transition system is an IMC and each CTMC is an IMC

Example IMC

On maximal progress

- What is the behaviour in state s with $s \xrightarrow{\alpha}$ and $s \xrightarrow{\lambda}$?
 - if the action α is enabled, no delay takes place in s and α can be performed
 - as the probability of the delay to finish is $1 - e^{-\lambda \cdot 0} = 0$
- How do we know that action α is enabled?
 - we do *not* know this in general, as α may be subject to interaction
 - but in case $\alpha = \tau$, we know that it is always enabled!

⇒ in case $s \xrightarrow{\tau}$ and $s \xrightarrow{\lambda}$, the delay never takes place

- this is called the *maximal progress assumption*

- Maximal progress becomes apparent in bisimulation and axiomatization

Strong Markovian bisimulation

- Let $(S, \text{Act}, \rightarrow, \mathbf{R}, s_0)$ be an interactive Markov chain and R an equivalence relation on S
- R is a *Markovian bisimulation* on S if for any $(s, t) \in R$:
 - if $s \xrightarrow{\alpha} s'$ then $\exists t' \in S. t \xrightarrow{\alpha} t'$ and $(s', t') \in R$, for all $\alpha \in \text{Act}$ and
 - if $s \xrightarrow{\tau} t$ then $\mathbf{R}(s, C) = \mathbf{R}(t, C)$, for all C in S/R
- s and t are *Markovian bisimilar*, notation $s \sim_m t$, if:
 - there exists a Markovian bisimulation R on S with $(s, t) \in R$

Examples

Weak Markovian bisimulation

- Concept: adopt weak bisimulation on immediate actions
 - ⇒ important means to eliminate internal immediate actions
 - essential ingredient to reduce an IMC to a CTMC
- Markovian weak bisimulation:
 - an internal move must be mimicked by a sequence of (0 or more) internal moves
 - an observable move must be mimicked by an observable move
 - that may be preceded and/or followed by a sequence of (0 or more) internal moves
 - the cumulative rate to move to an equivalence class is the same
 - in case the state is “stable”, i.e., cannot move invisibly

note that Markovian transitions are not combined. Why?

Weak Markovian bisimulation

- Let $(S, Act, \rightarrow, \mathbf{R}, s_0)$ be an IMC and R an equivalence relation on S
- R is a *weak Markovian bisimulation* on S if for any $(s, t) \in R$:
 - if $s \xrightarrow{\tau} s'$ then $\exists t'. t \xrightarrow{\tau} t'$ and $(s', t') \in R$ and
 - if $s \xrightarrow{\alpha} s'$ then $\exists t'. t \xrightarrow{\alpha} t'$ and $(s', t') \in R$, for all $\alpha \in Act, \alpha \neq \tau$
 and
 - if $s \not\xrightarrow{\tau}$ then $\exists \textcolor{blue}{t'}. t \xrightarrow{\tau} \textcolor{blue}{t}'$ and $\textcolor{blue}{t}' \not\xrightarrow{\tau}$ and $\mathbf{R}(s, C) = \mathbf{R}(\textcolor{blue}{t}', \textcolor{red}{C}^\tau)$
- s and t are weak Markovian bisimilar, notation $s \approx_m s'$, if:
 - there exists a weak Markovian bisimulation R on S with $(s, s') \in R$

where $C^\tau = \{ s \mid s \xrightarrow{\tau} s' \text{ and } s' \in C \}$ are processes that can invisibly move to C

Example

A process algebra for sequential processes

A term P in the language tinyMarkovPA is defined as follows:

- nil nil or stop
- $\alpha.P$ action prefix
- $(\lambda).P$ delay prefix
 - behaves as process P after an exponential delay with rate $\lambda \in \mathbb{R}_{\geq 0}$
 - i.e., it evolves into P within t time units with probability $1 - e^{-\lambda \cdot t}$
- $P + Q$ choice
- X process instantiation
 - for defining equation $X = P$ in the recursive specification E

Operational semantics (I)

The semantics of term P (with recursive specification E) in tinyMPA is given by the IMC

$$(S, \text{Act}, \rightarrow, \rightarrow, s_0)$$

with $S = \text{all terms in tinyMPA}$, $\text{Act} = \alpha(P)$, $s_0 = P$ and \rightarrow is the smallest relation satisfying:

$$\frac{}{\alpha.P \xrightarrow{\alpha} P} \quad \text{and} \quad \frac{P \xrightarrow{\alpha} P'}{X \xrightarrow{\alpha} P'} \quad (X = P \in E)$$

$$\frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} \quad \text{and} \quad \frac{Q \xrightarrow{\alpha} Q'}{P + Q \xrightarrow{\alpha} Q'}$$

these are indeed the usual inference rules!

Operational semantics (II)

The Markovian transition relation \mapsto is the smallest relation satisfying:

$$\frac{}{(\lambda).P \xrightarrow{\lambda} P} \quad \text{and} \quad \frac{P \xrightarrow{\lambda}_j P'}{X \xrightarrow{\lambda}_j P'} \quad (X = P \in E)$$

$$\frac{P \xrightarrow{\lambda}_j P'}{P + Q \xrightarrow{\lambda}_{1.j} P'} \quad \text{and} \quad \frac{Q \xrightarrow{\lambda}_j Q'}{P + Q \xrightarrow{\lambda}_{2.j} Q'}$$

the reason for having indexed inference rules is the same as for DTMCs

Axiomatization of strong Markovian bisimulation

Axioms for \sim_m

Axioms for \sim

$$\begin{array}{llll}
 P + \text{nil} = P & P + Q = Q + P & \alpha.P + \alpha.P = \alpha.P & (P + Q) + R = P + (Q + R) \\
 P + Q = Q + P & & & \\
 P + P = P & (P + Q) + R = P + (Q + R) & & \\
 (P + Q) + R = P + (Q + R) & (\lambda).P + (\mu).P = (\lambda + \mu).P & & \\
 & & (\lambda).P + \tau.Q = \tau.Q &
 \end{array}$$

the listed axioms are sound and complete for \sim_m

Axiomatization of weak Markovian equivalence

- The τ -laws for \approx on transition systems also hold for \approx_m :

$$P = \tau.P$$

$$M + \textcolor{red}{N} + \tau.N = M + \tau.N$$

$$M + \textcolor{red}{\alpha.P} + \alpha.(\tau.P + N) = M + \alpha.(\tau.P + N)$$

- The first axiom implies in particular: $(\lambda).\tau.P = (\lambda).P$
- There is no need for a “delay version” of the second axiom
- Note that the following axiom is *not sound* for \approx_m :

$$M + (\lambda).P + (\lambda).(\tau.P + N) = M + (\lambda).(\tau.P + N)$$

Renaming and restriction

Let $f : Act \rightarrow Act$ be a *renaming* function. The inference rule for $P[f]$ is:

$$\frac{P \xrightarrow{\alpha} P'}{P[f] \xrightarrow{f(\alpha)} P'[f]} \quad \text{and} \quad \frac{P \xrightarrow{\lambda} P'}{P[f] \xrightarrow{\lambda} P'[f]}$$

For $\beta \in Act$, the derivation rule for restriction new β P is:

$$\frac{P \xrightarrow{\alpha} P' \quad \alpha \neq \beta}{\text{new } \beta P \xrightarrow{\alpha} \text{new } \beta P'} \quad \text{and} \quad \frac{P \xrightarrow{\lambda} P'}{\text{new } \beta P \xrightarrow{\lambda} \text{new } \beta P'}$$

Asynchronous parallel composition

For $H \subseteq \text{Act}$, the inference rules for $P \parallel_H Q$ are:

$$\frac{P \xrightarrow{\alpha} P'}{P \parallel_H Q \xrightarrow{\alpha} P' \parallel_H Q} \ (\alpha \notin H) \quad \text{and} \quad \frac{Q \xrightarrow{\alpha} Q'}{P \parallel_H Q \xrightarrow{\alpha} P \parallel_H Q'} \ (\alpha \notin H)$$

$$\frac{P \xrightarrow{\alpha} P' \wedge Q \xrightarrow{\alpha} Q'}{P \parallel_H Q \xrightarrow{\alpha} P' \parallel_H Q'} \ (\alpha \in H)$$

$$\frac{P \xrightarrow{\lambda} P'}{P \parallel_H Q \xrightarrow{\lambda} P' \parallel_H Q} \quad \text{and} \quad \frac{Q \xrightarrow{\lambda} Q'}{P \parallel_H Q \xrightarrow{\lambda} P \parallel_H Q'}$$

Justification for parallel composition

Example: an M/M/2/1 queueing system

Expansion law

on the black board

Congruence properties of \sim_m

- if $P \sim_m Q$ then $\alpha.P \sim_m \alpha.Q$ for any $\alpha \in Act$
- if $P \sim_m Q$ then $(\lambda).P \sim_m (\lambda).Q$ for any $\lambda \in \mathbb{R}_{>0}$
- if $P \sim_m Q$ then $P + R \sim_m Q + R$ and $R + P \sim_m R + Q$ for any R
- if $P \sim_m Q$ then $P[f] \sim_m Q[f]$ for any f
- if $P \sim_m Q$ then $P \setminus H \sim_m Q \setminus H$ for any H
- if $P \sim_m P'$ and $Q \sim_m Q'$ then $P \parallel_H Q \sim_m P' \parallel_H Q'$ for any H

it can also be proven that \approx_p is a congruence (except for +)

Obtaining a CTMC