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Theme of the course

The theory of modelling and analysis

of concurrent probabilistic systems
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Course topics second part

e Stochastic processes

— discrete-time Markov chains
— continuous-time Markov chains

e Probabilistic process algebra

— Operational semantics
— Behavioural equivalences: simulation and bisimulation

e Probabilities and non-determinism

— Probabilistic automata
— Behavioural equivalences

e Case studies
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Overview Lecture #12

= A probability theory refresher

— Random variables, probability measures etc.
— Stochastic processes

— Memoryless property

— Markov property and stochastic independence
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Probability theory is simple, isn’t it?

In no other branch of mathematics
IS it SO easy to make mistakes
as in probability theory

Henk Tijms, “Understanding Probability” (2004)
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Measurable space

A sample space €2 of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment

A c-algebra is a pair (Q,F) with Q # @ and F C 2% a collection of
subsets of sample space () such that:

1. Qe F
2. Ace F = Q—AeF, and
3. Vi>20.4;,€F) = Uysgdi€F

The elements of a o-algebra are called events
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Probabilities
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Probability space

A probability space P is a structure (€2, F, Pr) with:
e ({2, F)is a c-algebra, and
e Pr: 7 — [0, 1] is a probability measure, i.e.:

1. Pr(Q2) =1

2. Pr(U,2; Ai) =221 Pr(A;) A€ Fand A;nA; = oforij

The elements of a probability space are called measurable events
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Lemmas in probabilities

e Pr(A) =1—Pr(Q— A)
e Pr(AU B) = Pr(A) + Pr(B) — Pr(AN B)
e Pr(ANB)="Pr(A|B)-Pr(B)
e AC Bimplies Pr(A) < Pr(B)
o Pr(U,>1 £n) = sup,; Pr(En)

e Pr((),>; Bn) = infy>1 Pr(E,)
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Discrete probability space

e Pris a discrete probability measure on (€2, F) if

— there is a countable set A € () such that for a € A:

{a}eF and > Pr({a}) =1

aCA

— e.g., a probability measure on (€2, 2%)

e (02, F,Pr)isthen called a discrete probability space

— otherwise, it is called a continuous probability space

e Examples of discrete probability spaces:

— throwing a die, number of customers in a shop, . . .
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Random variable
Let (2, F) and (2, ') be measurable spaces

e Function f : 2 — Q' is a measurable function if

FYA) ={a|fla)e AYeF forallAec F'

e Measurable function X : 2 — IR Iis a random variable

— (IR, B(IR)) is the Borel space on the real line

e The probability distribution of X is Pry = ProX !

— where Pr is a probability measure on (€2, F)
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Example: rolling a pair of fair dice
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Distribution function
The distribution function F'x of random variable X is defined by:

Fx(d) = I)’(r((—oo,d]) =Pr({aeQ| X(a) <d}) forreald
{xX<d}

Properties:

e F'x IS monotonic and right-continuous
¢ 0< Fx(d) <1
e limy_, - Fx(d)=0and

o limy . Fx(d) =1
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Discrete / continuous random variables

e The distribution function of a discrete random variable can be written
as:

Fx(d) =) f(d;) with f the mass function
d;<d

e For a continuous random variable:

d
Fx(d) = / fx(u) du with f the density function

e F'x iIs often also called cumulative density function
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Stochastic process

e Stochastic process is a collection of random variables { X; |t € T}

— casual notation X (t) instead of X;
— with all X; defined on probability space P
— parameter ¢ (mostly interpreted as “time”) takes values in the set T

e X, IS arandom variable whose values are called states

— the set of all possible values of X is the state space of the stochastic process

e If the state space is discrete, the stochastic process is discrete and
called a chain

e Index set 1" can be discrete/continuous; state space can be discrete
or continuous
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Classification of stochastic processes ()

Parameter space T

State space Discrete Continuous
Discrete DTMC CTMC
# jobs at k-th job departure # jobs attime ¢
Continuous waiting time of k-th job total service time at time ¢
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Example stochastic processes

e Waiting times of customers in a shop

e Interarrival times of jobs at a production lines

e Service times of a sequence of jobs

e Files sizes that are downloaded via the Internet

e Number of occupied channels in a wireless network
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Bernouilli process

e Bernouilli random variable: Pr(X =1) =pand Pr(X =0) =1—p

— moments: E[X] = p and Var[X] = E[X?] — (E[X])* = p-(1—p)

e Bernouilli process is a sequence of independent and identically
distributed Bernouilli r.v's X, X5, ...
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Binomial process

e Binomial process S, with Sy =0and S, =>" | X,
— probability distribution of “counting process” S.,:

Pr{S, =k} = (Z) pr-(1—=p)" " foro<k<n

— moments: E[S,] = n-p and Var[S,] = n-p-(1—p)
e Let T; be the number of steps between increments of .5,
Pr{T;=k}=(1—-p)tp fork>1

= this is a geometric distribution
— with E[T}] = L and Var[T;] = -

p
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Memoryless property

Discrete random variable X is memoryless if:
Pr{X=k+m|X>m} = Pr{X=Fk}foranyk > 1

any geometrically distributed random variable is memoryless
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Joint distribution function

e Stochastic process is a collection of random variables { X; |t € T}
e What is the distribution function of a stochastic process?

e In general, the joint distribution function needs to be determined:
Fx(dl,. ..,Cln;tl,...,tn) — PI‘{X(tl) < dl,.. ,X(tn) < dn}
foralln, t1,...,t, € Tand d4,...,d,

e The structure of ' depends on the stochastic dependency between
the random variables X (¢,)
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Stochastic independence

Random variables X; on probability space P are independent if
Fx(dy, ... dpity,... tn) = | [ Fx(dist;) = | [ Pr{X(t;) < di}
1=1 =1

Example independent stochastic process is a renewal process

e a discrete-time stochastic process where

e X (t1),X(t2),... are independent, identically distributed, non-negative random
variables

Minimal possible dependence:

e the next state of the stochastic process only depends on the current state, and not
on states assumed previously ( = Markov dependence)
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Markov property

Stochastic process { X(t) | t € T } is a Markov process if
forany to <t <...<t, <tnpi1:

Pr{X(t’n—l—l) < dn—l—l | X(tO) — dO7X(t1) — d17 s 7X<tn) — dn}

Pr{ X(tny1) < dpy1 | X(1n) = dn }

The distribution of X (¢,,11), given the values X (¢y) through X (¢,,), only
depends on the current state X (¢,,)

= the history has no influence on the future behaviour
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Invariance to time-shifts

Markov process { X (t) | t € T } is time-homogeneous iff for any ¢’ < t:

Pr{X(t)<d|X(t)=d}=Pr{X(t—t)<d|X(0)=d}

the next state only depends on the current state, and
not on how long we have already been in that state
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