

Stochastic Processes

Lecture #12 of Modeling Concurrent and Probabilistic Processes

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl 2: Software Modeling & Verification

`katoen@cs.rwth-aachen.de`

`moves.rwth-aachen.de/i2/mcps09/`

June 18, 2009

Theme of the course

The theory of modelling and analysis
of concurrent probabilistic systems

Course topics second part

- **Stochastic processes**
 - discrete-time Markov chains
 - continuous-time Markov chains
- **Probabilistic process algebra**
 - Operational semantics
 - Behavioural equivalences: simulation and bisimulation
- **Probabilities and non-determinism**
 - Probabilistic automata
 - Behavioural equivalences
- **Case studies**

Overview Lecture #12

⇒ *A probability theory refresher*

- Random variables, probability measures etc.
- Stochastic processes
- Memoryless property
- Markov property and stochastic independence

Probability theory is simple, isn't it?

*In no other branch of mathematics
is it so easy to make mistakes
as in probability theory*

Henk Tijms, "Understanding Probability" (2004)

Measurable space

A *sample space* Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment

A *σ -algebra* is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^\Omega$ a collection of subsets of sample space Ω such that:

1. $\Omega \in \mathcal{F}$
2. $A \in \mathcal{F} \Rightarrow \Omega - A \in \mathcal{F}$, and
3. $(\forall i \geq 0. A_i \in \mathcal{F}) \Rightarrow \bigcup_{i \geq 0} A_i \in \mathcal{F}$

The elements of a σ -algebra are called events

Probabilities

Probability space

A *probability space* \mathcal{P} is a structure $(\Omega, \mathcal{F}, \Pr)$ with:

- (Ω, \mathcal{F}) is a σ -algebra, and
- $\Pr : \mathcal{F} \rightarrow [0, 1]$ is a *probability measure*, i.e.:
 1. $\Pr(\Omega) = 1$
 2. $\Pr(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \Pr(A_i)$ $A_i \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$ for $i \neq j$

The elements of a probability space are called *measurable* events

Lemmas in probabilities

- $\Pr(A) = 1 - \Pr(\Omega - A)$
- $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$
- $\Pr(A \cap B) = \Pr(A \mid B) \cdot \Pr(B)$
- $A \subseteq B$ implies $\Pr(A) \leq \Pr(B)$
- $\Pr(\bigcup_{n \geq 1} E_n) = \sup_{n \geq 1} \Pr(E_n)$
- $\Pr(\bigcap_{n \geq 1} E_n) = \inf_{n \geq 1} \Pr(E_n)$

Discrete probability space

- \Pr is a *discrete* probability measure on (Ω, \mathcal{F}) if

- there is a countable set $A \in \Omega$ such that for $a \in A$:

$$\{a\} \in \mathcal{F} \quad \text{and} \quad \sum_{a \in A} \Pr(\{a\}) = 1$$

- e.g., a probability measure on $(\Omega, 2^\Omega)$

- $(\Omega, \mathcal{F}, \Pr)$ is then called a *discrete* probability space

- otherwise, it is called a continuous probability space

- Examples of discrete probability spaces:

- throwing a die, number of customers in a shop, . . .

Random variable

Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be measurable spaces

- Function $f : \Omega \rightarrow \Omega'$ is a *measurable function* if

$$f^{-1}(A) = \{ a \mid f(a) \in A \} \in \mathcal{F} \quad \text{for all } A \in \mathcal{F}'$$

- Measurable function $X : \Omega \rightarrow \mathbb{R}$ is a *random variable*
 - $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is the Borel space on the real line
- The *probability distribution* of X is $\Pr_X = \Pr \circ X^{-1}$
 - where \Pr is a probability measure on (Ω, \mathcal{F})

Example: rolling a pair of fair dice

Distribution function

The *distribution function* F_X of random variable X is defined by:

$$F_X(d) = \Pr_X((-\infty, d]) = \Pr(\underbrace{\{a \in \Omega \mid X(a) \leq d\}}_{\{X \leq d\}}) \quad \text{for real } d$$

Properties:

- F_X is monotonic and right-continuous
- $0 \leq F_X(d) \leq 1$
- $\lim_{d \rightarrow -\infty} F_X(d) = 0$ and
- $\lim_{d \rightarrow \infty} F_X(d) = 1$

Discrete / continuous random variables

- The distribution function of a *discrete* random variable can be written as:

$$F_X(d) = \sum_{d_i \leq d} f(d_i) \quad \text{with } f \text{ the mass function}$$

- For a continuous random variable:

$$F_X(d) = \int_{-\infty}^d f_X(u) du \quad \text{with } f \text{ the density function}$$

- F_X is often also called *cumulative density function*

Stochastic process

- *Stochastic process* is a collection of random variables $\{ X_t \mid t \in T \}$
 - casual notation $X(t)$ instead of X_t
 - with all X_t defined on probability space \mathcal{P}
 - parameter t (mostly interpreted as “time”) takes values in the set T
- X_t is a random variable whose values are called *states*
 - the set of all possible values of X_t is the state space of the stochastic process
- If the state space is discrete, the stochastic process is discrete and called a *chain*
- Index set T can be discrete/continuous; state space can be discrete or continuous

Classification of stochastic processes (I)

		Parameter space T
State space	Discrete	Continuous
Discrete	DTMC # jobs at k -th job departure	CTMC # jobs at time t
Continuous	waiting time of k -th job	total service time at time t

Example stochastic processes

- Waiting times of customers in a shop
- Interarrival times of jobs at a production lines
- Service times of a sequence of jobs
- File sizes that are downloaded via the Internet
- Number of occupied channels in a wireless network
-

Bernoulli process

- Bernoulli *random variable*: $\Pr(X = 1) = p$ and $\Pr(X = 0) = 1-p$
 - moments: $E[X] = p$ and $\text{Var}[X] = E[X^2] - (E[X])^2 = p \cdot (1-p)$
- Bernoulli *process* is a *sequence* of independent and identically distributed Bernoulli r.v.'s X_1, X_2, \dots

Binomial process

- *Binomial* process S_n with $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$
 - probability distribution of “counting process” S_n :

$$\Pr\{ S_n = k \} = \binom{n}{k} p^k \cdot (1-p)^{n-k} \quad \text{for } 0 \leq k \leq n$$

- moments: $E[S_n] = n \cdot p$ and $\text{Var}[S_n] = n \cdot p \cdot (1-p)$
- Let T_i be the number of steps between increments of S_n

$$\Pr\{ T_i = k \} = (1-p)^{k-1} \cdot p \quad \text{for } k \geq 1$$

\Rightarrow this is a geometric distribution

- with $E[T_i] = \frac{1}{p}$ and $\text{Var}[T_i] = \frac{1-p}{p^2}$

Memoryless property

Discrete random variable X is memoryless if:

$$\Pr\{ X = k+m \mid X > m \} = \Pr\{ X = k \} \text{ for any } k \geq 1$$

any geometrically distributed random variable is memoryless

Joint distribution function

- Stochastic process is a collection of random variables $\{ X_t \mid t \in T \}$
- What is the distribution function of a stochastic process?
- In general, the *joint* distribution function needs to be determined:

$$F_X(d_1, \dots, d_n; t_1, \dots, t_n) = \Pr\{ X(t_1) \leq d_1, \dots, X(t_n) \leq d_n \}$$

for all $n, t_1, \dots, t_n \in T$ and d_1, \dots, d_n

- The structure of F depends on the *stochastic dependency* between the random variables $X(t_i)$

Stochastic independence

Random variables X_i on probability space \mathcal{P} are *independent* if

$$F_X(d_1, \dots, d_n; t_1, \dots, t_n) = \prod_{i=1}^n F_X(d_i; t_i) = \prod_{i=1}^n \Pr\{ X(t_i) \leq d_i \}$$

Example independent stochastic process is a *renewal process*

- a discrete-time stochastic process where
- $X(t_1), X(t_2), \dots$ are independent, identically distributed, non-negative random variables

Minimal possible dependence:

- the next state of the stochastic process only depends on the current state, and not on states assumed previously (\Rightarrow *Markov dependence*)

Markov property

Stochastic process $\{ X(t) \mid t \in T \}$ is a *Markov process* if for any $t_0 < t_1 < \dots < t_n < t_{n+1}$:

$$\Pr\{ X(t_{n+1}) \leq d_{n+1} \mid X(t_0) = d_0, X(t_1) = d_1, \dots, X(t_n) = d_n \}$$

=

$$\Pr\{ X(t_{n+1}) \leq d_{n+1} \mid X(t_n) = d_n \}$$

The distribution of $X(t_{n+1})$, given the values $X(t_0)$ through $X(t_n)$, *only depends on the current state $X(t_n)$*

⇒ the history has no influence on the future behaviour

Invariance to time-shifts

Markov process $\{ X(t) \mid t \in T \}$ is *time-homogeneous* iff for any $t' < t$:

$$\Pr\{ X(t) \leq d \mid X(t') = d' \} = \Pr\{ X(t - t') \leq d \mid X(0) = d' \}$$

the next state only depends on the current state, and
not on how long we have already been in that state