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Theme of the course

The theory of modelling and analysis

of concurrent probabilistic systems
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Course topics second part

• Stochastic processes

– discrete-time Markov chains
– continuous-time Markov chains

• Probabilistic process algebra

– Operational semantics
– Behavioural equivalences: simulation and bisimulation

• Probabilities and non-determinism

– Probabilistic automata
– Behavioural equivalences

• Case studies
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Overview Lecture #12

⇒ A probability theory refresher

– Random variables, probability measures etc.
– Stochastic processes
– Memoryless property
– Markov property and stochastic independence
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Probability theory is simple, isn’t it?

In no other branch of mathematics
is it so easy to make mistakes

as in probability theory

Henk Tijms, “Understanding Probability” (2004)
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Measurable space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment

A σ-algebra is a pair (Ω,F) with Ω �= ∅ and F ⊆ 2Ω a collection of
subsets of sample space Ω such that:

1. Ω ∈ F

2. A ∈ F ⇒ Ω − A ∈ F , and

3. (∀i � 0. Ai ∈ F) ⇒ ⋃
i�0 Ai ∈ F

The elements of a σ-algebra are called events
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Probabilities
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Probability space

A probability space P is a structure (Ω,F ,Pr) with:

• (Ω,F) is a σ-algebra, and

• Pr : F → [0, 1] is a probability measure, i.e.:

1. Pr(Ω) = 1

2. Pr (
⋃∞

i=1 Ai) =
∑∞

i=1 Pr(Ai) Ai ∈ F and Ai ∩ Aj = ∅ for i�=j

The elements of a probability space are called measurable events
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Lemmas in probabilities

• Pr(A) = 1 − Pr(Ω − A)

• Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B)

• Pr(A ∩ B) = Pr(A | B) · Pr(B)

• A ⊆ B implies Pr(A) � Pr(B)

• Pr(
⋃

n�1 En) = supn�1 Pr(En)

• Pr(
⋂

n�1 En) = infn�1 Pr(En)
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Discrete probability space

• Pr is a discrete probability measure on (Ω,F) if

– there is a countable set A ∈ Ω such that for a ∈ A:

{ a } ∈ F and
X
a∈A

Pr({ a }) = 1

– e.g., a probability measure on (Ω, 2Ω)

• (Ω,F , Pr) is then called a discrete probability space

– otherwise, it is called a continuous probability space

• Examples of discrete probability spaces:

– throwing a die, number of customers in a shop, . . .
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Random variable

Let (Ω,F) and (Ω′,F ′) be measurable spaces

• Function f : Ω → Ω′ is a measurable function if

f−1(A) = { a | f(a) ∈ A } ∈ F for all A ∈ F ′

• Measurable function X : Ω → IR is a random variable

– (IR, B(IR)) is the Borel space on the real line

• The probability distribution of X is PrX = Pr ◦X−1

– where Pr is a probability measure on (Ω,F)
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Example: rolling a pair of fair dice
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Distribution function
The distribution function FX of random variable X is defined by:

FX(d) = Pr
X

((−∞, d]) = Pr({ a ∈ Ω | X(a) � d }︸ ︷︷ ︸
{X � d }

) for real d

Properties:

• FX is monotonic and right-continuous

• 0 � FX(d) � 1

• limd→−∞ FX(d) = 0 and

• limd→∞ FX(d) = 1
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Discrete / continuous random variables

• The distribution function of a discrete random variable can be written
as:

FX(d) =
∑
di�d

f(di) with f the mass function

• For a continuous random variable:

FX(d) =
∫ d

−∞
fX(u) du with f the density function

• FX is often also called cumulative density function
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Stochastic process

• Stochastic process is a collection of random variables {Xt | t ∈ T }
– casual notation X(t) instead of Xt

– with all Xt defined on probability space P
– parameter t (mostly interpreted as “time”) takes values in the set T

• Xt is a random variable whose values are called states

– the set of all possible values of Xt is the state space of the stochastic process

• If the state space is discrete, the stochastic process is discrete and
called a chain

• Index set T can be discrete/continuous; state space can be discrete
or continuous
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Classification of stochastic processes (I)

Parameter space T

State space Discrete Continuous

Discrete DTMC CTMC
# jobs at k-th job departure # jobs at time t

Continuous waiting time of k-th job total service time at time t
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Example stochastic processes

• Waiting times of customers in a shop

• Interarrival times of jobs at a production lines

• Service times of a sequence of jobs

• Files sizes that are downloaded via the Internet

• Number of occupied channels in a wireless network

• . . . . . .

c© JPK 16



#12: Stochastic processes MCPS09

Bernouilli process

• Bernouilli random variable: Pr(X = 1) = p and Pr(X = 0) = 1−p

– moments: E[X] = p and Var[X] = E[X2] − (E[X])2 = p·(1−p)

• Bernouilli process is a sequence of independent and identically
distributed Bernouilli r.v.’s X1,X2, . . .
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Binomial process

• Binomial process Sn with S0 = 0 and Sn =
∑n

i=1 Xi

– probability distribution of “counting process” Sn:

Pr{Sn = k } =

„
n

k

«
pk · (1 − p)n−k for 0 � k � n

– moments: E[Sn] = n·p and Var[Sn] = n·p·(1−p)

• Let Ti be the number of steps between increments of Sn

Pr{Ti = k } = (1 − p)k−1·p for k � 1

⇒ this is a geometric distribution
– with E[Ti] = 1

p and Var[Ti] = 1−p

p2
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Memoryless property

Discrete random variable X is memoryless if:

Pr{X = k+m | X > m } = Pr{X = k } for any k � 1

any geometrically distributed random variable is memoryless
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Joint distribution function

• Stochastic process is a collection of random variables {Xt | t ∈ T }

• What is the distribution function of a stochastic process?

• In general, the joint distribution function needs to be determined:

FX(d1, . . . , dn; t1, . . . , tn) = Pr{X(t1) � d1, . . . , X(tn) � dn }

for all n, t1, . . . , tn ∈ T and d1, . . . , dn

• The structure of F depends on the stochastic dependency between
the random variables X(ti)
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Stochastic independence

Random variables Xi on probability space P are independent if

FX(d1, . . . , dn; t1, . . . , tn) =
n∏

i=1

FX(di; ti) =
n∏

i=1

Pr{X(ti) � di }

Example independent stochastic process is a renewal process

• a discrete-time stochastic process where

• X(t1), X(t2), . . . are independent, identically distributed, non-negative random
variables

Minimal possible dependence:

• the next state of the stochastic process only depends on the current state, and not
on states assumed previously ( ⇒ Markov dependence)
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Markov property

Stochastic process {X(t) | t ∈ T } is a Markov process if
for any t0 < t1 < . . . < tn < tn+1 :

Pr{X(tn+1) � dn+1 | X(t0) = d0,X(t1) = d1, . . . , X(tn) = dn }
=

Pr{X(tn+1) � dn+1 | X(tn) = dn }

The distribution of X(tn+1), given the values X(t0) through X(tn), only
depends on the current state X(tn)

⇒ the history has no influence on the future behaviour
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Invariance to time-shifts

Markov process {X(t) | t ∈ T } is time-homogeneous iff for any t′ < t:

Pr{X(t) � d | X(t′) = d′ } = Pr{X(t − t′) � d | X(0) = d′ }

the next state only depends on the current state, and
not on how long we have already been in that state
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