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#13: Discrete-time Markov chains MCPS

Overview Lecture #13

= Discrete-time Markov chains

— What is a discrete-time Markov chain?

— Computing n-step transition probabilities
— Transient distribution

— Limiting and stationary distribution
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Markov property

Stochastic process { X(t) | t € T } is a Markov process if
forany to <t <...<t, <tnpi1:

Pr{X(t’n—l—l) < dn—l—l | X(tO) — dO7X(t1) — d17 s 7X<tn) — dn}

Pr{ X(tny1) < dpy1 | X(1n) = dn }

The distribution of X (¢,,11), given the values X (¢y) through X (¢,,), only
depends on the current state X (¢,,)

= the history has no influence on the future behaviour
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Invariance to time-shifts

Markov process { X (¢) | t € T} is time-homogeneous iff for any ¢’ < ¢:

Pr{X(t)<d|X(t)=d}=Pr{X({t—t)<d|X(0)=d}

the next state only depends on the current state, and
not on how long we have already been in that state
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Discrete-time Markov chain

e A time-homogeneous discrete-time Markov chain (DTMC) is

— a Markov process
— with discrete parameter 1" and discrete state space X (t)
— which is time-homogeneous

e ps(n) =Pr{ X(n) = s} probability to be in state s at step n

e Probability of being in state s’ at step n when in s at step m < n:

Pr{X(n)=¢]|X(m)=s}
Pr{ X(n—m)=s"| X(0) =s}

ps,s’(m7 n)

— these are the (n—m)-step transition probabilities
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MCPS

Stochastic matrix

e 1-step transition probabilities can be gathered in matrix P
- P(s,s") =p,s(n+1l,n) =p, +(0,1) =Pr{ X(1) =s"| X(0) =s}
— i.e., the probability to move from s to s’ in a single step

e P is a stochastic matrix:

— quadratic cardinality
— 0 < P(s,s’) < 1forall states s, s’
- > P(s,s") =1 forany state s

e For stochastic matrix P it holds:

— P" is a stochastic matrix, for all n
— P has Eigenvalue 1 and all Eigenvalues are at most 1
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Another perspective

A discrete-time Markov chain (DTMC) is a tuple (S, P) where:

e S IS a countable set of states
e P:5S x5 —|0,1] is a probability matrix satisfying

> P(s,s)=1 forallseS

s'eS

e (state s is absorbing whenever P(s,s) = 1)

a DTMC is a transition system (unlabeled transitions)
where transitions are equipped with discrete probabilities
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Craps

e Roll two dice and bet on outcome

e Come-out roll (*pass line” wager): (,RPPS :?"AMB’-WC
— outcome 7 or 11: win a \ =

<V

v

— outcome 2, 3, or 12: loss (“craps”)

’
— any other outcome: roll again (outcome is “point”) J

e Repeat until 7 or the “point” is thrown:

— outcome 7: loss (“seven-out”)
— outcome the point: win
— any other outcome: roll again
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A DTMC model of Craps

e Come-out roll:

Nell\]

— 7o0r11: win
— 2,3,0r12: loss
— else: roll again

e Next roll(s):
— 7: loss
— point: win
— else: roll again
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State residence time distribution
Let T; be the remaining number of epochs to stay in state s:

Pr{Ts=1} = 1—-P(s,s)

Pr{Ts =2} = P(s,s)-(1—-P(s,s))
Pr{T, =3} = P(s,5)? (1-P(s,s))
Pr{T,=n} = P(s,5)" " (1-P(s,s))

= the state residence times in a DTMC obey a geometric distribution

_ _ B 1 : o P(s,s)
with expectation E[T] = 1—p; and variance Var[T.] = =57

This is not a surprise: the geometric distribution is the only

discrete probability distribution that exhibits the memoryless property
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Initial distribution

e What is the state-distribution after n steps?

— Pr{ X (n) = s } for each state s

e This can only be answered when the initial distribution is known!

e Starting distribution p(0) : S — [0, 1] such thatp (0) = Pr{ X(0) = s}

— comparable to initial states of transition systems

- ZSESBS(O> =1

e Example starting distributions: .. ....
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Computing n-step transition probabilities

e The probability to move from s to s’ in n > 0 steps:

posr(n) =Y psor(l) - pyry(n—l) forall0<I<n

— this is known as the Chapman-Kolmogorov equation

e For/=1andn > 0we obtain: p; «(n) =Y »ps s (1) psr s (n—1)

_ in matrix-form: P(™ = p) . p(r=1) — p . p(n—1)
— where P is the n-step transition probability matrix

e Repeating this scheme: P(") =P . P(»~D = =pr-1.pl) =Pn

Note: the difference between P" and P™
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Evolution of an example DTMC
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On the long run
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Transient distribution of a DTMC

Probability to be in state s at step n:

ps(n) = Pr{X(n)=s}
= ) Pr{X(0)=5}-Pr{X(n)=s|X(0)=5"}
s'eS p;zo) ps,::(n)
Using p(n) = (psy(n), ps, (1), ..., ps, (1)) We obtain in matrix form:

p(n) =p(0) - P™ given p(0)

where P" is the n-step transition probability matrix

p(n) is called the n-step transient-state probability vector
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Example
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MCPS
Limiting distribution
e Stochastic matrix P is called ergodic if:

P> = Ilim P" exists and has identical rows

n—0o0

e Theorem: if the transition probability matrix P of a DTMC is ergodic:

— p(n) converges to a limiting distribution v independent from p(0)
— and each row of P°° equals the limiting distribution

e This can be seen as follows:

Vsg -+ Usy
lim p(n) = lim p(0)-P" = p(0)- lim P”—p(O)-<... ...>_v
n—oo — n—0oo — - U aud® O - ’USO ’Usn
POO
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Limiting distribution
e \We also have:

v = lim p(n+1) = lim p(0) -P"*! = ( lim p(0) - P”) -P=v-P

n—oo — n—oo — n—oo —

e Thus, Ilimiting probabilities can be obtained by solving the
(homogeneous) system of linear equations:

v=v-P or v-I-P)=0 wunder ) v(i)=1

— vector v is the left Eigenvector of P with Eigenvalue 1

e v IS called the limiting state-probability vector
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Examples
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Limiting distribution

Two interpretations of v(s):

e the long-run proportion of time that the DTMC “spends” in state s

e the probability the DTMC is in s when making a snapshot after a very
long time
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Transient and recurrent states

e The probability of first return to state s after exactly n epochs is:
fs(n)=Pr{X(n)=s5,X(n-1) #s,...,X(1) #s| X(0) =5}

— not to be confused with p, ;(n) = P"(s, s)
— relationship: pss(n) = > 0, fs(k) - pss(n—k) forn >1

e Probability to eventually return to s: f, = >.°° | fi(n)

— state s is called transient if f; < 1

= there is a non-zero probability that the DTMC will not return to s
— state s is called recurrent if f; = 1

= it is impossible to never come back to a recurrent state
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A graph-theoretical characterization
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Irreducibility and periodicity

e A DTMC is irreducible if its underlying digraph is strongly connected

— otherwise it is called reducible

e The period d(s) of recurrent state s is

— greatest common divisor of {n > 0 | pss(n) > 0}
— if d(s) = 1, recurrent state s is called aperiodic

e Some facts:

— all states in the same strongly component have the same period
— an irreducible DTMC is aperiodic if all its states are aperiodic
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Mean recurrence time

e For recurrent state s, the mean number of epochs between two
successive Visits to s:

me = Zn - fs(n)
n=1

— state s is called positive recurrent if m; < oo
— state s is called null recurrent if m, = oo

e State s is ergodic if s is aperiodic and positive recurrent

— a DTMC is called ergodic when all its states are ergodic

e Fact: in afinite, aperiodic and irreducible DTMC all states are ergodic

— there are also infinite DTMCs that are ergodic
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Connected states have the same “type”

Let s and s’ be mutually reachable from each other. Then:

s is transient iff s’is transient
s is null-recurrent  iff s’ is null-recurrent
s Is positive recurrent  iff s’ is positive recurrent

s has period d iff s’ has period d
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Stationary distribution
e 7 IS the stationary distribution of DTMC with matrix P if: # = 7 - P

e in elementwise notation:

e Or equivalently:

m(s)(1—P(s,s)) = Z n(s') - P(s, )
the “outflux” of s s'#s
the “inﬁlrjx” of s

7
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Stationary distribution

e An irreducible, positive recurrent DTMC has a unigue stationary
distribution v:

e ... but the limiting distribution does not need to exist

— since the DTMC could be periodic!
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Stationary versus limiting distribution
For ergodic DTMCs: the limiting and stationary distribution coincide
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