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#13: Discrete-time Markov chains MCPS

Overview Lecture #13

⇒ Discrete-time Markov chains

– What is a discrete-time Markov chain?
– Computing n-step transition probabilities
– Transient distribution
– Limiting and stationary distribution
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Markov property

Stochastic process {X(t) | t ∈ T } is a Markov process if
for any t0 < t1 < . . . < tn < tn+1 :

Pr{X(tn+1) � dn+1 | X(t0) = d0,X(t1) = d1, . . . , X(tn) = dn }
=

Pr{X(tn+1) � dn+1 | X(tn) = dn }

The distribution of X(tn+1), given the values X(t0) through X(tn), only
depends on the current state X(tn)

⇒ the history has no influence on the future behaviour
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Invariance to time-shifts

Markov process {X(t) | t ∈ T } is time-homogeneous iff for any t′ < t:

Pr{X(t) � d | X(t′) = d′ } = Pr{X(t − t′) � d | X(0) = d′ }

the next state only depends on the current state, and
not on how long we have already been in that state
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Discrete-time Markov chain

• A time-homogeneous discrete-time Markov chain (DTMC) is

– a Markov process
– with discrete parameter T and discrete state space X(t)

– which is time-homogeneous

• ps(n) = Pr{X(n) = s } probability to be in state s at step n

• Probability of being in state s′ at step n when in s at step m < n:

ps,s′(m, n) = Pr{X(n) = s′ | X(m) = s }
= Pr{X(n−m) = s′ | X(0) = s }

– these are the (n−m)-step transition probabilities
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Stochastic matrix

• 1-step transition probabilities can be gathered in matrix P

– P(s, s′) = ps,s′(n+1, n) = ps,s′(0, 1) = Pr{X(1) = s′ | X(0) = s }
– i.e., the probability to move from s to s′ in a single step

• P is a stochastic matrix:

– quadratic cardinality
– 0 � P(s, s′) � 1 for all states s, s′

–
P

s′ P(s, s′) = 1 for any state s

• For stochastic matrix P it holds:

– Pn is a stochastic matrix, for all n

– P has Eigenvalue 1 and all Eigenvalues are at most 1

c© JPK 5



#13: Discrete-time Markov chains MCPS

Another perspective

A discrete-time Markov chain (DTMC) is a tuple (S,P) where:

• S is a countable set of states

• P : S × S → [0, 1] is a probability matrix satisfying

∑
s′∈S

P(s, s′) = 1 for all s ∈ S

• (state s is absorbing whenever P(s, s) = 1)

a DTMC is a transition system (unlabeled transitions)
where transitions are equipped with discrete probabilities
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Craps
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Craps

• Roll two dice and bet on outcome

• Come-out roll (“pass line” wager):

– outcome 7 or 11: win
– outcome 2, 3, or 12: loss (“craps”)
– any other outcome: roll again (outcome is “point”)

• Repeat until 7 or the “point” is thrown:

– outcome 7: loss (“seven-out”)
– outcome the point: win
– any other outcome: roll again
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A DTMC model of Craps

• Come-out roll:

– 7 or 11: win
– 2, 3, or 12: loss
– else: roll again

• Next roll(s):

– 7: loss
– point: win
– else: roll again
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State residence time distribution
Let Ts be the remaining number of epochs to stay in state s:

Pr{Ts = 1 } = 1 − P(s, s)

Pr{Ts = 2 } = P(s, s) · (1 − P(s, s))

Pr{Ts = 3 } = P(s, s)2 · (1 − P(s, s))
. . . . . . . . . . . . . . .

Pr{Ts = n } = P(s, s)n−1 · (1 − P(s, s))

⇒ the state residence times in a DTMC obey a geometric distribution

with expectation E[Ts] = 1
1−P(s,s) and variance Var[Ts] = P(s,s)

(1−P(s,s))2

This is not a surprise: the geometric distribution is the only

discrete probability distribution that exhibits the memoryless property
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Initial distribution

• What is the state-distribution after n steps?

– Pr{X(n) = s } for each state s

• This can only be answered when the initial distribution is known!

• Starting distribution p(0) : S → [0, 1] such that p
s
(0) = Pr{X(0) = s }

– comparable to initial states of transition systems
–

P
s∈S p

s
(0) = 1

• Example starting distributions: . . . . . .
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Computing n-step transition probabilities

• The probability to move from s to s′ in n � 0 steps:

ps,s′(n) =
∑
s′′

ps,s′′(l) · ps′′,s′(n−l) for all 0 � l � n

– this is known as the Chapman-Kolmogorov equation

• For l = 1 and n > 0 we obtain: ps,s′(n) =
∑

s′′ ps,s′′(1) · ps′′,s′(n−1)

– in matrix-form: P(n) = P(1) · P(n−1) = P · P(n−1)

– where P(n) is the n-step transition probability matrix

• Repeating this scheme: P(n) = P · P(n−1) = . . . = Pn−1 · P(1) = Pn

Note: the difference between Pn and P(n)
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Evolution of an example DTMC
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On the long run
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Transient distribution of a DTMC
Probability to be in state s at step n:

ps(n) = Pr{X(n) = s }
=

∑
s′∈S

Pr{X(0) = s′ }︸ ︷︷ ︸
ps′(0)

·Pr{X(n) = s | X(0) = s′ }︸ ︷︷ ︸
ps′,s(n)

Using p(n) = (ps0(n), ps1(n), . . . , psk
(n)) we obtain in matrix form:

p(n) = p(0) · Pn given p(0)

where Pn is the n-step transition probability matrix

p(n) is called the n-step transient-state probability vector
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Example

c© JPK 16



#13: Discrete-time Markov chains MCPS

Limiting distribution

• Stochastic matrix P is called ergodic if:

P∞ = lim
n→∞Pn exists and has identical rows

• Theorem: if the transition probability matrix P of a DTMC is ergodic:

– p(n) converges to a limiting distribution v independent from p(0)

– and each row of P∞ equals the limiting distribution

• This can be seen as follows:

lim
n→∞ p(n) = lim

n→∞ p(0) · Pn = p(0)· lim
n→∞Pn︸ ︷︷ ︸

P∞

= p(0)·
(

vs0
. . . vsn

. . . . . . . . .

vs0 . . . vsn

)
= v
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Limiting distribution

• We also have:

v = lim
n→∞ p(n+1) = lim

n→∞ p(0) · Pn+1 =
(

lim
n→∞ p(0) · Pn

)
· P = v · P

• Thus, limiting probabilities can be obtained by solving the
(homogeneous) system of linear equations:

v = v · P or v · (I− P) = 0 under
∑

i v(i) = 1

– vector v is the left Eigenvector of P with Eigenvalue 1

• v is called the limiting state-probability vector
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Examples
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Limiting distribution

Two interpretations of v(s):

• the long-run proportion of time that the DTMC “spends” in state s

• the probability the DTMC is in s when making a snapshot after a very
long time
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Transient and recurrent states

• The probability of first return to state s after exactly n epochs is:

fs(n) = Pr{X(n) = s,X(n−1) �= s, . . . ,X(1) �= s | X(0) = s }

– not to be confused with ps,s(n) = Pn(s, s)

– relationship: ps,s(n) =
Pn

k=1 fs(k) · ps,s(n−k) for n � 1

• Probability to eventually return to s: fs =
∑∞

n=1 fs(n)

– state s is called transient if fs < 1

⇒ there is a non-zero probability that the DTMC will not return to s

– state s is called recurrent if fs = 1

⇒ it is impossible to never come back to a recurrent state
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A graph-theoretical characterization
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Irreducibility and periodicity

• A DTMC is irreducible if its underlying digraph is strongly connected

– otherwise it is called reducible

• The period d(s) of recurrent state s is

– greatest common divisor of {n > 0 | ps,s(n) > 0 }
– if d(s) = 1, recurrent state s is called aperiodic

• Some facts:

– all states in the same strongly component have the same period
– an irreducible DTMC is aperiodic if all its states are aperiodic
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Mean recurrence time

• For recurrent state s, the mean number of epochs between two
successive visits to s:

ms =
∞∑

n=1

n · fs(n)

– state s is called positive recurrent if ms < ∞
– state s is called null recurrent if ms = ∞

• State s is ergodic if s is aperiodic and positive recurrent

– a DTMC is called ergodic when all its states are ergodic

• Fact: in a finite, aperiodic and irreducible DTMC all states are ergodic

– there are also infinite DTMCs that are ergodic
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Connected states have the same “type”

Let s and s′ be mutually reachable from each other. Then:

s is transient iff s′ is transient

s is null-recurrent iff s′ is null-recurrent

s is positive recurrent iff s′ is positive recurrent

s has period d iff s′ has period d
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Stationary distribution

• π is the stationary distribution of DTMC with matrix P if: π = π · P

• in elementwise notation:

π(s) =
∑
s′

π(s′) · P(s′, s)

• or equivalently:

π(s)·(1 − P(s, s))︸ ︷︷ ︸
the “outflux” of s

=
∑
s′�=s

π(s′) · P(s′, s)

︸ ︷︷ ︸
the “influx” of s
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Stationary distribution

• An irreducible, positive recurrent DTMC has a unique stationary
distribution v:

v(s) =
1

ms

• . . . but the limiting distribution does not need to exist

– since the DTMC could be periodic!
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Stationary versus limiting distribution

For ergodic DTMCs: the limiting and stationary distribution coincide
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