

Probabilistic bisimulation

Lecture #14 of Modeling Concurrent and Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl 2: Softwaremodeling and Verification

E-mail: katoen@cs.rwth-aachen.de

June 25, 2009

Overview Lecture #14

⇒ *Probabilistic bisimulation*

- Bisimulation for labeled transition systems
- Fully probabilistic systems and DTMCs
- Probabilistic bisimulation

Labeled transition system

A *labeled transition system* LTS is a quadruple $(S, Act, \longrightarrow, s_0)$ where

- S is a set of states,
- Act is a set of actions,
- $\longrightarrow \subseteq S \times Act \times S$ is a transition relation,
- $s_0 \in S$ is the initial state.

S and Act are either finite or countably infinite

Notation: $s \xrightarrow{\alpha} s'$ instead of $(s, \alpha, s') \in \longrightarrow$

Strong bisimulation

- Let $LTS = (S, Act, \longrightarrow, s_0)$ and R a binary relation on S
- R is a *strong bisimulation* on $S \times S$ whenever for $(s, t) \in R$:
 - if $s \xrightarrow{\alpha} s'$ then there exists $t' \in S$ such that $t \xrightarrow{\alpha} t'$ and $(s', t') \in R$
 - and
 - if $t \xrightarrow{\alpha} t'$ then there exists $s' \in S$ such that $s \xrightarrow{\alpha} s'$ and $(s', t') \in R$
- s is *strongly bisimilar* to t , notation $s \sim t$, if:
 - there exists a strong bisimulation R such that $(s, t) \in R$

property: \sim is an equivalence

Strong bisimulation

$$s \xrightarrow{\alpha} s'$$

$$R$$

$$t$$

can be completed to

$$s \xrightarrow{\alpha} s'$$

$$R$$

$$t \xrightarrow{\alpha} t'$$

and

$$s$$

$$R$$

$$t \xrightarrow{\alpha} t'$$

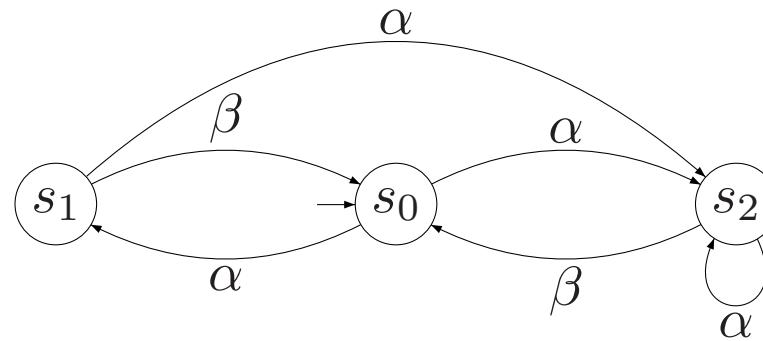
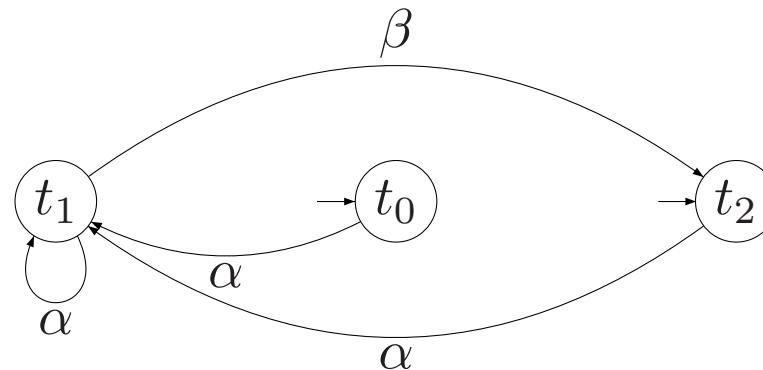
can be completed to

$$s \xrightarrow{\alpha} s'$$

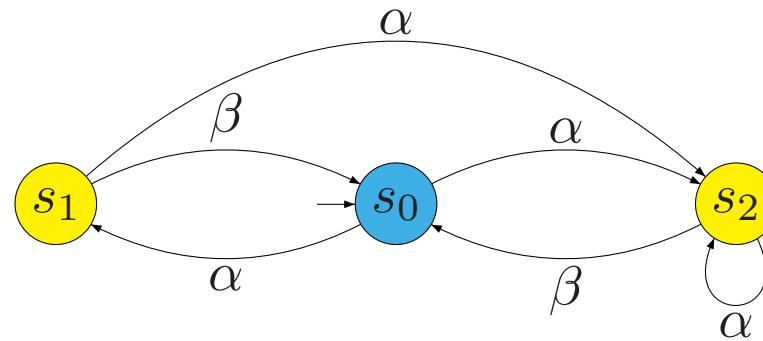
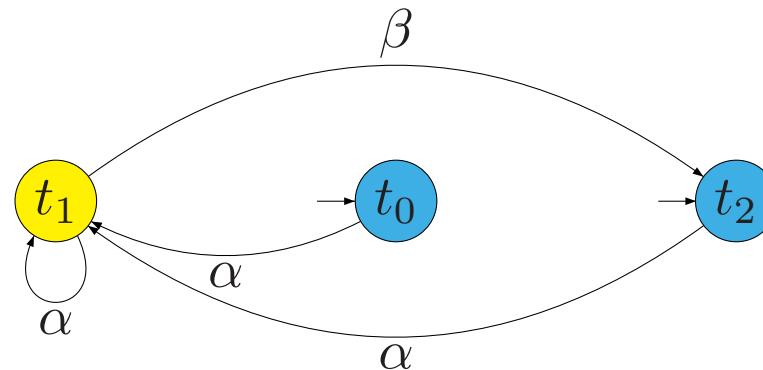
$$R$$

$$t \xrightarrow{\alpha} t'$$

Are these transition systems strongly bisimilar?



Yes, they are!



Quotient LTS under \sim

For $LTS = (S, \text{Act}, \longrightarrow, s_0)$ and strong bisimulation $\sim \subseteq S \times S$ let

$LTS/\sim = (S', \text{Act}, \longrightarrow', s'_0)$, the quotient of LTS under \sim

where

- $S' = S/\sim = \{ [s]_\sim \mid s \in S \}$ with $[s]_\sim = \{ s' \in S \mid s \sim s' \}$
 \Rightarrow *states are equivalence classes under \sim*
- \longrightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_\sim \xrightarrow{\alpha'} [s']_\sim}$$
- $s'_0 = [s_0]_\sim$, the equivalence class of the initial state in LTS

note that $LTS \sim LTS/\sim$ Why?

Strong bisimulation revisited

Let $P : S \times Act \times 2^S \rightarrow \{0, 1\}$ be a predicate such that for $S' \subseteq S$:

$$P(s, \alpha, S') = \begin{cases} 1 & \text{if } \exists s' \in S'. s \xrightarrow{\alpha} s' \\ 0 & \text{otherwise} \end{cases}$$

Let $LTS = (S, Act, \longrightarrow, s_0)$ and R an *equivalence relation* on S .

Then: R is a *strong bisimulation* on S if for $(s, s') \in R$:

$$P(s, \alpha, C) = P(s', \alpha, C) \quad \text{for all } C \text{ in } S/R \text{ and } \alpha \in Act$$

this definition is equivalent to the previous one (exercise)

Probabilistic bisimulation: intuition

- Strong bisimulation is used to **compare** labeled transition systems
- Strongly bisimilar states exhibit the same step-wise behaviour
- We like to adapt bisimulation to discrete-time Markov chains
- This yields a probabilistic variant of strong bisimulation
- When do two DTMC states exhibit the same step-wise behaviour?
- **Key:** if their transition probability for each equivalence class coincides

for technical reasons, consider a slight generalization of DTMCs

Fully probabilistic system

A *fully probabilistic system* (FPS) is a pair $\mathcal{D} = (S, \mathbf{P})$ where:

- S is a countable set of states
- $\mathbf{P} : S \times S \rightarrow [0, 1]$ is a *probability matrix* satisfying

$$\sum_{s' \in S} \mathbf{P}(s, s') \in [0, 1] \quad \text{for all } s \in S$$

If $\sum_{s' \in S} \mathbf{P}(s, s') = 1$, state s is called *stochastic*; otherwise, s is *sub-stochastic*

Deadlocks

- The probability to move from s to (a state in) $C \subseteq S$:

$$\mathbf{P}(s, C) = \sum_{s' \in C} \mathbf{P}(s, s')$$

- Let $\mathbf{P}(s, \perp) = 1 - \mathbf{P}(s, S)$
 - the probability to stay forever in s without performing any transition
 - although \perp is not a “real” state (i.e., $\perp \notin S$), it may be regarded as a *deadlock*
 - \perp is treated in the next lecture as an auxiliary state

s is stochastic iff $\mathbf{P}(s, \perp) = 0$ iff $\mathbf{P}(s, S) = 1$

Discrete-time Markov chain

A DTMC is an FPS where *no* state is sub-stochastic:

$$\mathbf{P}(s, S) = 1 \quad \text{for all } s \in S$$

Probabilistic bisimulation

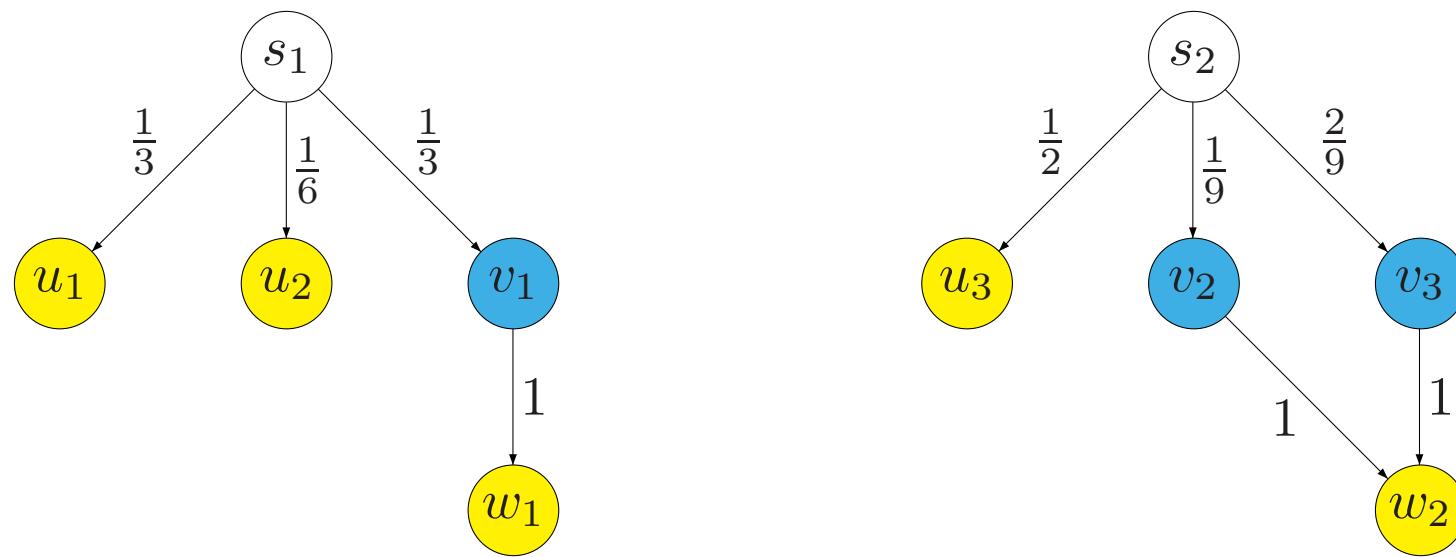
- Let $\mathcal{D} = (S, \mathbf{P})$ be a FPS and R an equivalence relation on S
- R is a *probabilistic bisimulation* on S if for any $(s, s') \in R$:

$$\mathbf{P}(s, C) = \mathbf{P}(s', C) \quad \text{for all } C \text{ in } S/R$$

- s and s' are *probabilistic bisimilar* (or: lumping equivalent), $s \sim_p s'$, if:
there exists a probabilistic bisimulation R on S with $(s, s') \in R$

it follows that: $s \sim_p s' \Rightarrow \mathbf{P}(s, \perp) = \mathbf{P}(s', \perp)$

Example



Another example

Quotient FPS under \sim_p

For $\mathcal{D} = (S, \mathbf{P})$ and probabilistic bisimulation $\sim_p \subseteq S \times S$ let

$$\mathcal{D}/\sim_p = (S', \mathbf{P}'), \quad \text{the quotient of } \mathcal{D} \text{ under } \sim_p$$

where

- $S' = S/\sim_p = \{ [s]_{\sim_p} \mid s \in S \}$ with $[s]_{\sim_p} = \{ s' \in S \mid s \sim_p s' \}$
- $\mathbf{P}' : S' \times S' \rightarrow [0, 1]$ is defined by:

$$\mathbf{P}'([s]_{\sim_p}, [s']_{\sim_p}) = \mathbf{P}(s, [s']_{\sim_p})$$

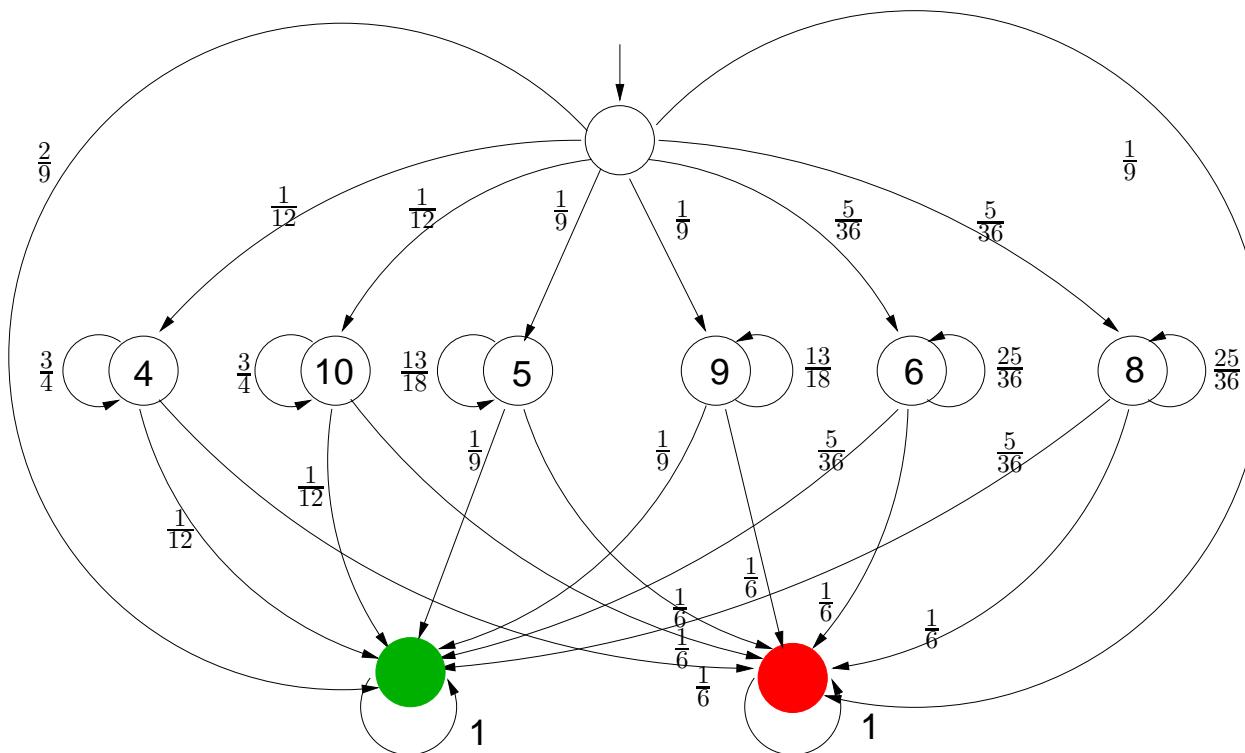
if an initial distribution is given on \mathcal{D} , then: $\underline{p}'_C(0) = \sum_{s \in C} \underline{p}_s(0)$ for each $C \in S/\sim_p$

Craps

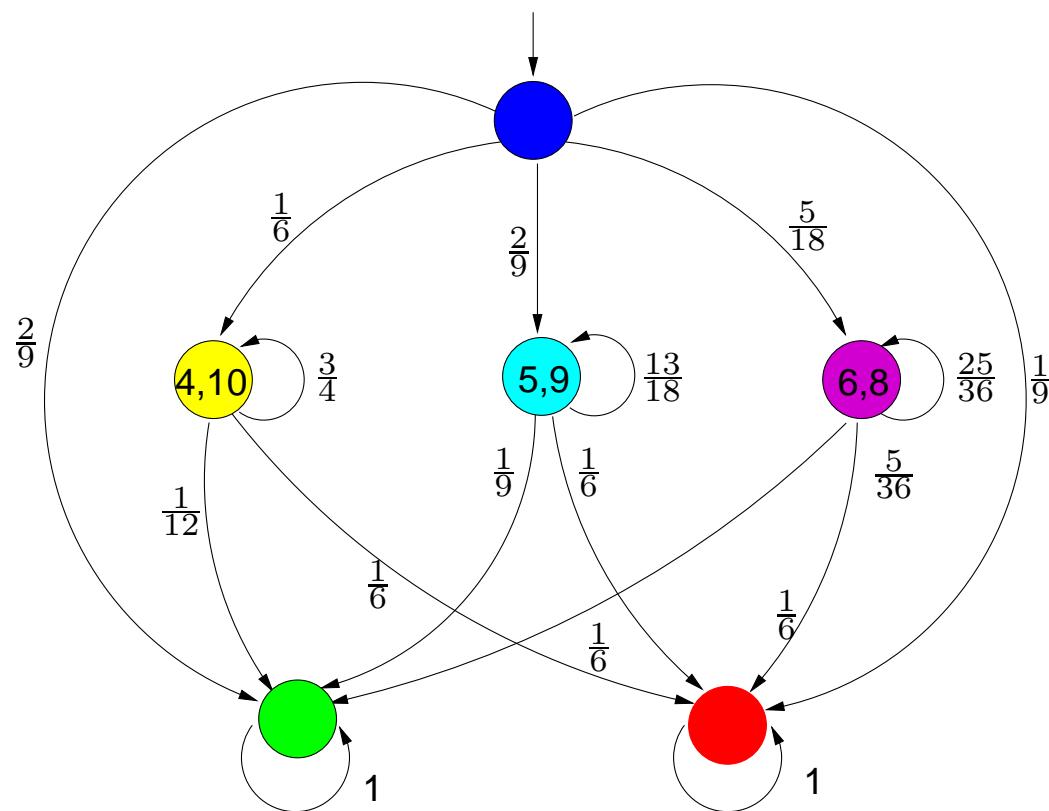
- Roll two dice and bet on outcome
- Come-out roll (“pass line” wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: loss (“craps”)
 - any other outcome: roll again (outcome is “point”)
- Repeat until 7 or the “point” is thrown:
 - outcome 7: loss (“seven-out”)
 - outcome the **point**: win
 - any other outcome: roll again

A DTMC model of Craps

- Come-out roll:
 - 7 or 11: win
 - 2, 3, or 12: loss
 - else: roll again
- Next roll(s):
 - 7: loss
 - point: win
 - else: roll again



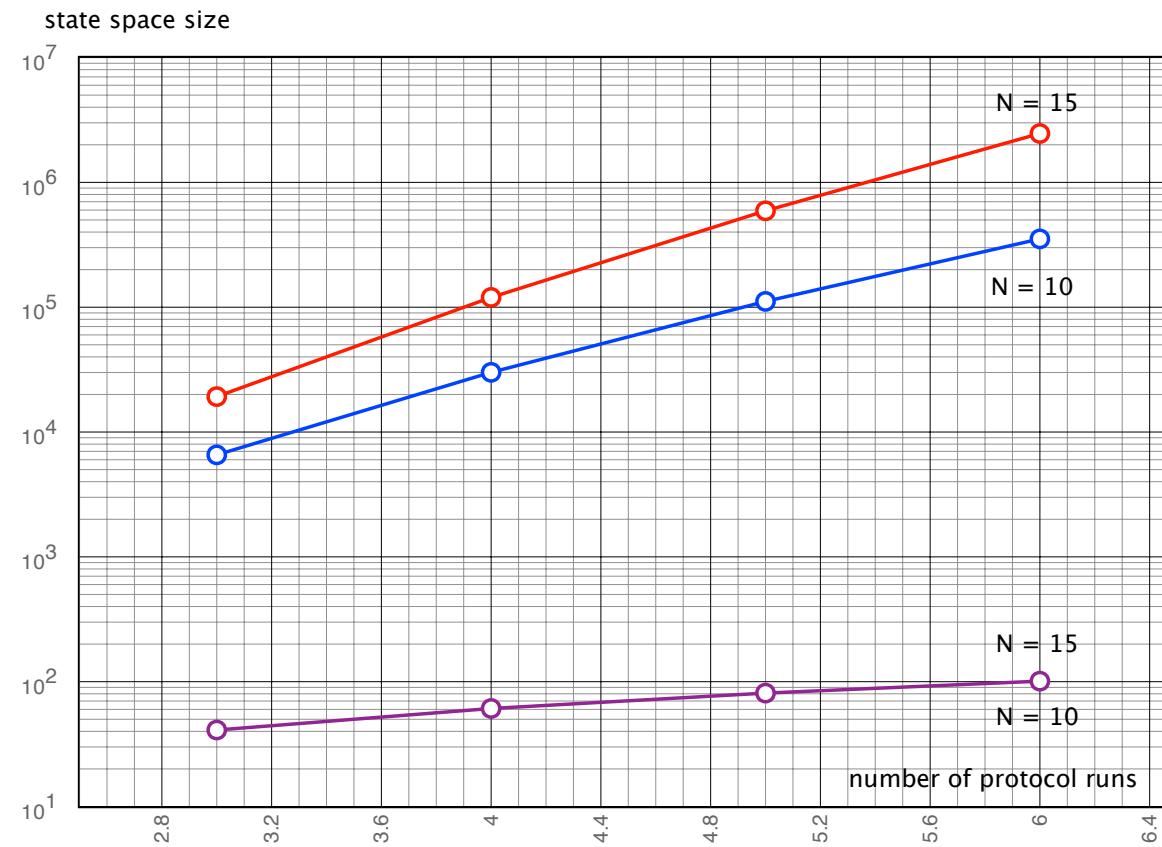
Quotient DTMC



Crowds protocol (Reiter & Rubin, 1998)

- A protocol for **anonymous web browsing** (variants: mCrowds, BT-Crowds)
- Hide user's communication by **random routing** within a crowd
 - sender selects a crowd member randomly using a uniform distribution
 - selected router flips a biased coin:
 - * with probability $1 - p$: direct delivery to final destination
 - * otherwise: select a next router randomly (uniformly)
 - once a routing path has been established, use it until crowd changes
- Rebuild routing paths on crowd changes (R times)
- **Probable innocence**:
 - probability real sender is discovered $< \frac{1}{2}$ if $N \geq \frac{p}{p-1} \cdot (c+1)$
 - where N is crowd's size and c is number of corrupt crowd members

Crowds protocol



state space reductions for bisimulation quotient

Initial distribution

- Let $\mathcal{D} = (S, \mathbf{P})$ be an FPS with initial distribution $\underline{p}(0) : S \rightarrow [0, 1]$
- Let $\mathcal{D}_0 = (S_0, \mathbf{P}_0)$ be obtained from \mathcal{D} by adding a new initial state:
 - $S_0 = S \cup \{ s_0 \}$ with $s_0 \notin S$
 - $\mathbf{P}_0(s, s') = \begin{cases} \mathbf{P}(s, s') & \text{if } s \neq s_0, s' \neq s_0 \\ \underline{p}_{s'}(0) & \text{if } s = s_0, s' \neq s_0 \\ 0 & \text{otherwise} \end{cases}$
- Two FPSs with initial distribution are bisimilar, $(\mathcal{D}, \underline{p}(0)) \sim_p (\mathcal{D}', \underline{p}'(0))$
 - if there exists a probabilistic bisimulation R on $S_0 \uplus S'_0$ with $(s_0, s'_0) \in R$

Preservation of state probabilities

- Let $\mathcal{D} = (S, \mathbf{P})$ be an FPS with initial distribution $\underline{p}(0)$ and \mathcal{D}_0 / \sim_p the quotient under \sim_p
- For any $C \in S_0 / \sim_p$ we have:

$$\underline{p}'_C(n) = \sum_{s \in C} \underline{p}_s(n) \quad \text{for any } n \geq 0$$

- If the limiting distribution exists, then it follows:

$$\underline{p}'_C = \lim_{n \rightarrow \infty} \underline{p}'_C(n) = \lim_{n \rightarrow \infty} \sum_{s \in C} \underline{p}_s(n) = \sum_{s \in C} \underline{p}_s$$

Preservation of reachability probabilities

For any equivalence class $C \in S_{\sim_p}$:

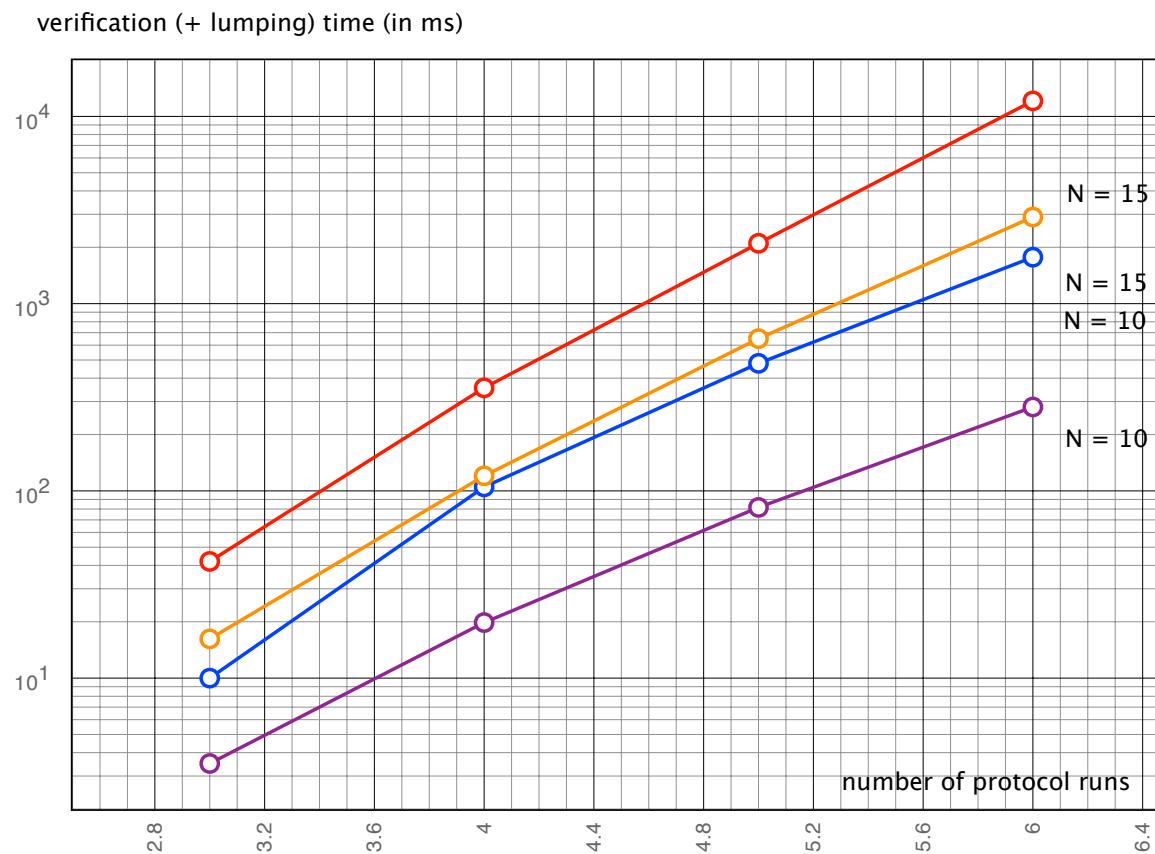
$$s \sim_p s' \Rightarrow \underbrace{\Pr \left\{ s \xrightarrow{\leq n} C \right\}}_{p(s, n, C)} = \Pr \left\{ s' \xrightarrow{\leq n} C \right\} \quad \text{for any } n \geq 0$$

where the probability to reach C within at most n steps is:

$$p(s, n, C) = \begin{cases} 1 & \text{if } s \in C \\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot p(s', n-1, C) & \text{if } s \notin C \text{ and } n > 0 \\ 0 & \text{otherwise} \end{cases}$$

this can be generalized by forbidding paths that visit states in $B \in S_{\sim_p}$ prior to reaching C

Crowds protocol



run times for eventually observe the real sender more than once