

# Probabilistic simulation

**Lecture #15 of Modeling Concurrent and Probabilistic Systems**

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl 2: Softwaremodeling and Verification

E-mail: [katoen@cs.rwth-aachen.de](mailto:katoen@cs.rwth-aachen.de)

June 26, 2009

# Overview Lecture #15

⇒ *Probabilistic simulation*

- Simulation on labeled transition systems
- Weight functions
- Probabilistic simulation (on FPSs)
- Properties of probabilistic simulation

## Labeled transition system

A *labeled transition system*  $LTS$  is a quadruple  $(S, Act, \rightarrow, s_0)$  where

- $S$  is a set of states,
- $Act$  is a set of actions,
- $\rightarrow \subseteq S \times Act \times S$  is a transition relation,
- $s_0 \in S$  is the initial state.

## Strong simulation

- Let  $LTS = (S, Act, \rightarrow, s_0)$  and  $R$  a binary relation on  $S$
- $R$  is a **strong simulation** on  $S \times S$  whenever for  $(s, t) \in R$ :
  - if  $s \xrightarrow{\alpha} s'$  then there exists  $t' \in S$  such that  $t \xrightarrow{\alpha} t'$  and  $(s', t') \in R$
- Pictorially:

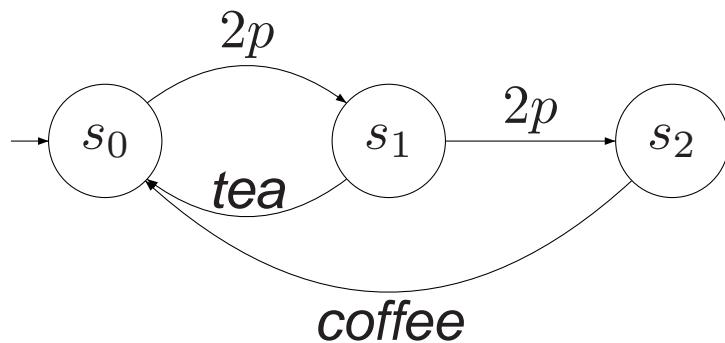
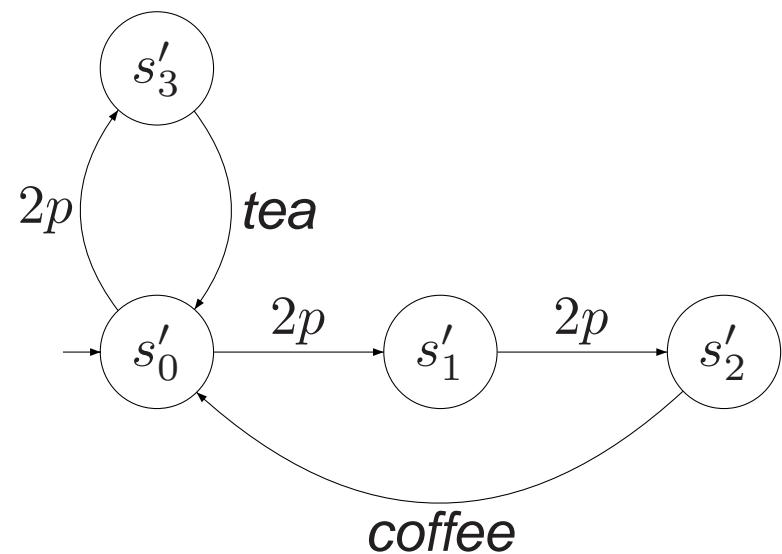
$$\begin{array}{ccc}
 s & \xrightarrow{\alpha} & s' \\
 R & & \text{can be completed to} \\
 t & & R
 \end{array}
 \qquad
 \begin{array}{ccc}
 s & \xrightarrow{\alpha} & s' \\
 R & & R \\
 t & \xrightarrow{\alpha} & t'
 \end{array}$$

note: transitions of state  $t$  do not need to be mimicked by state  $s$

## Strong simulation

- State  $s$  is *strongly simulated* by  $t$ , notation  $s \sqsubseteq t$ , if:  
there exists a strong simulation  $R$  such that  $(s, t) \in R$
- Property:  $\sqsubseteq$  is a pre-order (i.e., reflexive and transitive)
- Lifting  $\sqsubseteq$  to transition systems:  $LTS \sqsubseteq LTS'$  if
  - there is a strong simulation  $R$  on  $S \uplus S'$  such that  $(s_0, s'_0) \in R$
  - where  $s_0$  and  $s'_0$  is the initial state of  $LTS$  and  $LTS'$ , respectively
- Property:  $LTS \sqsubseteq LTS'$  implies  $Traces(LTS) \subseteq Traces(LTS')$ 
  - the converse holds for if  $LTS$  is deterministic, but not in general!

## Example strong simulation



$LTS_{right} \sqsubseteq LTS_{left}$  but  $LTS_{left} \not\sqsubseteq LTS_{right}$

Why?

note that  $Traces(LTS_{left}) = Traces(LTS_{right})$

## Strong simulation on executions

Whenever we have:

$$\begin{array}{ccccccc}
 s_0 & \xrightarrow{\alpha_0} & s_1 & \xrightarrow{\alpha_1} & s_2 & \xrightarrow{\alpha_2} & s_3 & \xrightarrow{\alpha_3} & s_4 \dots \dots \\
 \sqsubseteq & & & & & & & & \\
 t_0 & & & & & & & & 
 \end{array}$$

this can be completed to

$$\begin{array}{ccccccc}
 s_0 & \xrightarrow{\alpha_0} & s_1 & \xrightarrow{\alpha_1} & s_2 & \xrightarrow{\alpha_2} & s_3 & \xrightarrow{\alpha_3} & s_4 \dots \dots \\
 \sqsubseteq & & \sqsubseteq & & \sqsubseteq & & \sqsubseteq & & \sqsubseteq \\
 t_0 & \xrightarrow{\alpha_0} & t_1 & \xrightarrow{\alpha_1} & t_2 & \xrightarrow{\alpha_2} & t_3 & \xrightarrow{\alpha_3} & t_4 \dots \dots
 \end{array}$$

## Simulation equivalence

- $\sqsubseteq$  is reflexive and transitive, but not necessarily symmetric
  - relations that are reflexive and transitive are also called **pre-orders**
- The *kernel* of  $\sqsubseteq$  is defined by:

$$\simeq = \sqsubseteq \cap \sqsubseteq^{-1}$$

- Relation  $\simeq$  is an equivalence and is called *simulation equivalence*
  - $LTS \simeq LTS'$  iff  $LTS \sqsubseteq LTS'$  and  $LTS' \sqsubseteq LTS$

## $\simeq$ and $\sim$ are slightly different

For strong bisimulation it holds:

$$s \xrightarrow{\alpha} s'$$

$$\sim$$

can be completed to

$$t$$

$$s \xrightarrow{\alpha} s'$$

$$\sim$$

$$\sim$$

$$t \xrightarrow{\alpha} t'$$

*but* for strong simulation equivalence:

$$s$$

$$\simeq$$

$$t \xrightarrow{\alpha} t'$$

$$s \xrightarrow{\alpha} s'$$

$$\simeq$$

$\sqsubseteq$  (not  $\simeq$ )

$$t \xrightarrow{\alpha} t'$$

**Bisimulation  $\neq$  simulation equivalence**

## Fully probabilistic system

A *fully probabilistic system* (FPS) is a pair  $\mathcal{D} = (S, \mathbf{P})$  where:

- $S$  is a countable set of states
- $\mathbf{P} : S \times S \rightarrow [0, 1]$  is a *probability matrix* satisfying

$$\sum_{s' \in S} \mathbf{P}(s, s') \in [0, 1] \quad \text{for all } s \in S$$

## Deadlocks

- The probability to move from  $s$  to (a state in)  $C \subseteq S$ :

$$\mathbf{P}(s, C) = \sum_{s' \in C} \mathbf{P}(s, s')$$

- Let  $\mathbf{P}(s, \perp) = 1 - \mathbf{P}(s, S)$ 
  - the probability to stay forever in  $s$  without performing any transition
  - although  $\perp$  is not a “real” state (i.e.,  $\perp \notin S$ ), it may be regarded as a *deadlock*
  - $\perp$  is treated in the next lecture as an auxiliary state

$s$  is stochastic   iff    $\mathbf{P}(s, \perp) = 0$    iff    $\mathbf{P}(s, S) = 1$

## Discrete-time Markov chain

A DTMC is an FPS where *no* state is sub-stochastic:

$$\mathbf{P}(s, S) = 1 \quad \text{for all} \quad s \in S$$

## Probabilistic simulation

- For transition systems, state  $s'$  simulates state  $s$  if
  - for each successor  $t$  of  $s$  there is a one-step successor  $t'$  of  $s'$  that simulates  $t$ $\Rightarrow$  simulation of two states is defined in terms of simulation of successor *states*
- What are successor states in the probabilistic setting?
  - the target of a transition is in fact a probability distribution $\Rightarrow$  the simulation relation  $\sqsubseteq$  needs to be lifted from states to distributions
- $\Rightarrow$  probabilistic simulation of two states will be defined in terms of simulation of successor *distributions*

*let's first considering lifting an equivalence relation*

## Distribution functions

- A *distribution* on set  $S$  is a function  $\mu : S \rightarrow [0, 1]$  with

$$\sum_{s \in S} \mu(s) \leq 1$$

- Distribution  $\mu$  on  $S$  is called *stochastic* if  $\mu(\perp) = 0$ 
  - where  $\mu(\perp) = 1 - \sum_{s \in S} \mu(s)$
- Let  $Distr(S)$  denote the set of all distributions on  $S$
- For  $C \subseteq S$ , let  $\mu(C) = \sum_{s \in C} \mu(s)$

## Probabilistic bisimulation

- Let  $\mathcal{D} = (S, \mathbf{P})$  be a FPS and  $R$  an equivalence relation on  $S$
- $R$  is a *probabilistic bisimulation* on  $S$  if for any  $(s, s') \in R$ :

$$\mathbf{P}(s, C) = \mathbf{P}(s', C) \quad \text{for all } C \text{ in } S/R$$

- $s$  and  $s'$  are *probabilistic bisimilar* (or: lumping equivalent),  $s \sim_p s'$ , if:  
there exists a probabilistic bisimulation  $R$  on  $S$  with  $(s, s') \in R$

it follows that:  $s \sim_p s' \Rightarrow \mathbf{P}(s, \perp) = \mathbf{P}(s', \perp)$

## Probabilistic bisimulation revisited

- Let  $\mathcal{D} = (S, \mathbf{P})$  be a FPS and  $R$  an equivalence relation on  $S$
- $R$  is a *probabilistic bisimulation* on  $S$  if for any  $(s, s') \in R$ :

$$\mathbf{P}(s, \cdot) \equiv_R \mathbf{P}(s', \cdot)$$

where  $\equiv_R$  denotes the lifting of  $R$  on  $Distr(S)$  defined by:

$$\mu \equiv_R \mu' \text{ iff } \mu(C) = \mu'(C) \text{ for all } C \in S/R$$

## Probabilistic bisimulation revisited

- Let  $\mathcal{D} = (S, \mathbf{P})$  be a FPS and  $R$  an equivalence relation on  $S$
- $R$  is a *probabilistic bisimulation* on  $S$  if for any  $(s, s') \in R$ :

$$\mathbf{P}(s, \cdot) \equiv_R \mathbf{P}(s', \cdot)$$

where  $\equiv_R$  denotes the lifting of  $R$  on  $Distr(S)$  defined by:

$$\mu \equiv_R \mu' \text{ iff } \mu(C) = \mu'(C) \text{ for all } C \in S/R$$

for probabilistic simulation, we replace  $\equiv_R$  by a pre-order  $\sqsubseteq_R$   
 this is obtained using the concept of weight functions

## Weight function

- $\Delta$  “*distributes*” a distribution over  $X$  to one over  $Y$ 
  - such that the total probability assigned by  $\Delta$  to  $y \in Y$  . . . equals the original probability  $\mu'(y)$  on  $Y$
  - and symmetrically for the total probability mass of  $x \in X$  assigned by  $\Delta$
- $\Delta$  is *a distribution on  $X \times Y$*  such that:
  - the probability to select  $(x, y)$  with  $(x, y) \in R$  is one, and
  - the probability to select  $(x, \cdot) \in R$  equals  $\mu(x)$ , and
  - the probability to select  $(\cdot, y) \in R$  equals  $\mu'(y)$
- $\perp$  is a “bottom state” that can be simulated by *any* other state
  - $\Delta(\perp, \perp) > 0$  is possible, but  $\Delta(s, \perp) = 0$  for any state  $s$

## Weight function

- Let  $S$  be a countable set,  $R \subseteq S \times S$ , and  $\mu, \mu' \in Distr(S_\perp)$
- $\Delta \in Distr(S_\perp \times S_\perp)$  is a *weight function* for  $\mu$  and  $\mu'$  wrt.  $R$  if:
  1.  $\Delta(s, s') > 0$  implies  $(s, s') \in R$  or  $s = \perp$
  2.  $\mu(s) = \sum_{s' \in S_\perp} \Delta(s, s')$  for any  $s \in S_\perp$
  3.  $\mu'(s') = \sum_{s \in S_\perp} \Delta(s, s')$  for any  $s' \in S_\perp$
- $\mu \sqsubseteq_R \mu'$  iff there exists a weight function for  $\mu$  and  $\mu'$  wrt.  $R$ 
  - $\sqsubseteq_R$  is the lifting of  $R$  (on states) to distributions

## Weight function example

- Let  $S = \{s, t, u, v, w\}$  and (sub-stochastic) distribution  $\mu$  and  $\mu'$ :

$$\mu(s) = \frac{2}{9} \text{ and } \mu(t) = \frac{5}{9} \text{ and } \mu(\cdot) = 0 \text{ otherwise}$$

and

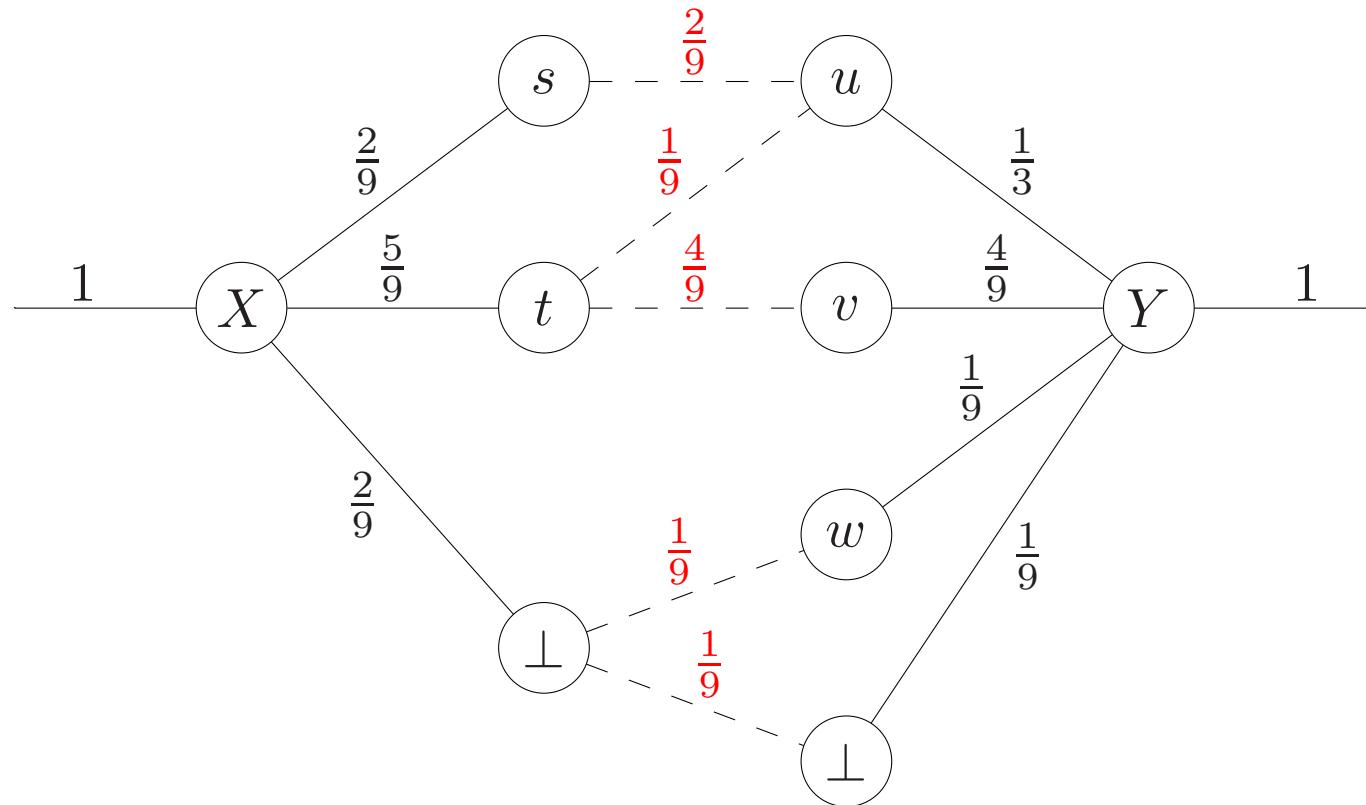
$$\mu'(u) = \frac{1}{3} \text{ and } \mu'(v) = \frac{4}{9} \text{ and } \mu'(w) = \frac{1}{9} \text{ and } \mu'(\cdot) = 0 \text{ otherwise}$$

- For  $R = \{(s, u), (t, u), (t, v)\}$ , it follows  $\mu \sqsubseteq_R \mu'$ , as, e.g.,  $\Delta$ :

$$\Delta(s, u) = \frac{2}{9} \quad \Delta(t, u) = \frac{1}{9} \quad \Delta(t, v) = \frac{4}{9} \quad \Delta(\perp, w) = \frac{1}{9} \quad \Delta(\perp, \perp) = \frac{1}{9}$$

fulfills the constraints of being a weight function

## Weight function example



## Properties of weight functions (1)

- Let  $\mu_1, \mu_2 \in Distr(S)$  and  $R_1, R_2 \subseteq S \times S$  with  $R_1 \subseteq R_2$ . Then:
  - $\mu_1 \sqsubseteq_{R_1} \mu_2$  implies  $\mu_1 \sqsubseteq_{R_2} \mu_2$
- Let  $\mu_1, \mu_2, \mu_3 \in Distr(S)$  and  $R_1, R_2 \subseteq S \times S$ . Then:
  - $\mu_1 \sqsubseteq_{R_1} \mu_2$  and  $\mu_2 \sqsubseteq_{R_2} \mu_3$  implies  $\mu_1 \sqsubseteq_{R_1 \odot R_2} \mu_3$
- Let  $R \subseteq S \times S$ . Then:
  - $R$  is reflexive (transitive) implies  $\sqsubseteq_R$  is reflexive (transitive)
- If  $R \subseteq S \times S$  is symmetric and  $\mu, \mu' \in Distr(S)$  with  $\mu(S) = \mu'(S)$  then
  - $\mu \sqsubseteq_R \mu'$  iff  $\mu' \sqsubseteq_R \mu$

## Properties of weight functions (2)

Let  $R \subseteq S \times S$  be an equivalence and  $\mu, \mu' \in Distr(S)$

- $\mu \equiv_R \mu'$  implies that  $\mu \sqsubseteq_R \mu'$  and  $\mu(S) = \mu'(S)$
- $\mu(S) = \mu'(S)$  implies that  $\mu \equiv_R \mu'$  iff  $\mu \sqsubseteq_R \mu'$

$\sqsubseteq_R$  on stochastic distributions is an equivalence and agrees with  $\equiv_R$

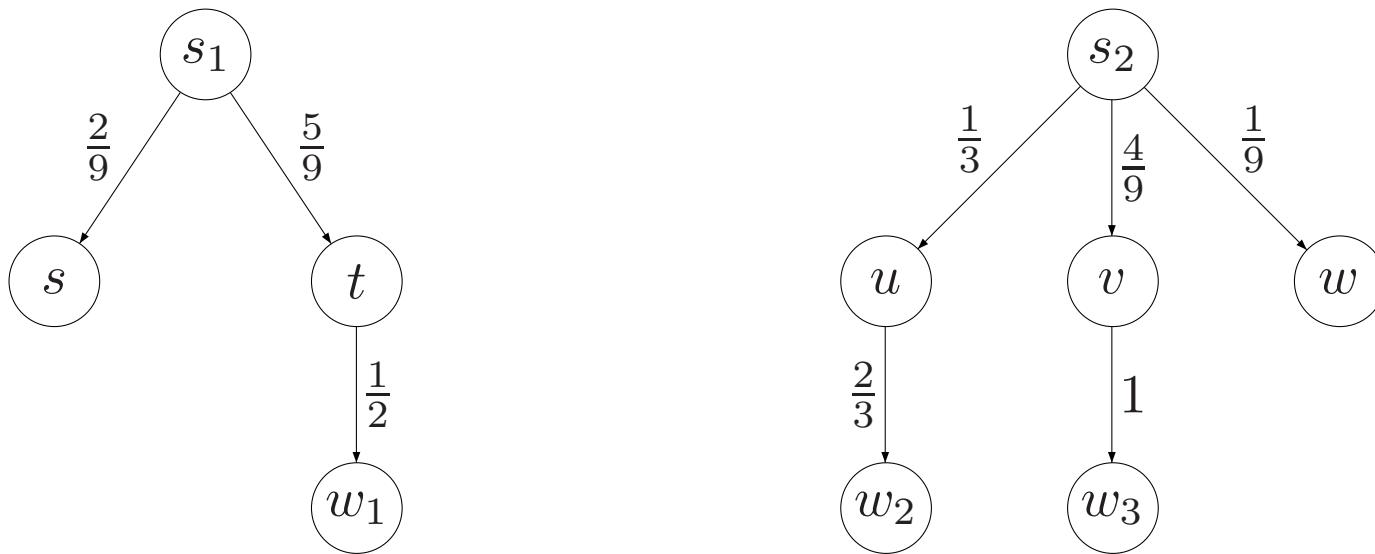
## Probabilistic simulation

- Let  $\mathcal{D} = (S, \mathbf{P})$  be a FPS and  $R \subseteq S \times S$
- $R$  is a *strong probabilistic simulation* on  $S$  if for all  $(s, s') \in R$ :

$$\mathbf{P}(s, \cdot) \sqsubseteq_R \mathbf{P}(s', \cdot)$$

- $s'$  probabilistically **simulates**  $s$ , denoted  $s \sqsubseteq_p s'$ , if there exists a (strong) probabilistic simulation  $R$  on  $S$  such that  $(s, s') \in R$

## Probabilistic simulation example



$$R = \{ (s_1, s_2), (s, u), (t, u), (t, v), (w_1, w_2), (w_1, w_3) \}$$

is a probabilistic simulation (cf. weight function on direct successors of  $s_1$  and  $s_2$ )

## Some properties

1.  $\sqsubseteq_p$  is the *coarsest* probabilistic simulation on  $\mathcal{D}$
2.  $s \sim_p s'$  implies  $s \sqsubseteq_p s'$
3. For any DTMC without absorbing states:  
 $\sqsubseteq_p$  is symmetric and coincides with  $\sim_p$

## Upward and downward closure

Let  $S$  be a set,  $C \subseteq S$ , and  $R \subseteq S \times S$  be a pre-order. Then:

$$C \uparrow_R = \{s' \in S \mid (s, s') \in R \text{ for some } s \in C\}$$

$$C \downarrow_R = \{s' \in S \mid (s', s) \in R \text{ for some } s \in C\}$$

$C$  is called *R-downward-closed* iff  $C = C \downarrow_R$

$C$  is called *R-upward-closed* iff  $C = C \uparrow_R$

*C is R-downward-closed iff S – C is R-upward closed*

if  $R$  is an equivalence relation, then  $s \uparrow_R = s \downarrow_R = [s]_R$

## Property

For any FPS,  $\sqsubseteq_p$  is the coarsest binary relation  $R$  on  $S$  such that:

for all  $(s, s') \in R$  and  $C \subseteq S$  :  $\mathbf{P}(s, C \uparrow_R) \leq \mathbf{P}(s', C \uparrow_R)$

## Simulation equivalence = bisimulation

For any FPS:  
probabilistic simulation equivalence  
coincides with  
probabilistic bisimulation

as opposed to transition systems!

## Probabilistic reachability

For any  $C \subseteq S$  such that  $C = C \uparrow_{\sqsubseteq_p}$ :

$$s \sqsubseteq_p s' \Rightarrow \underbrace{\Pr \left\{ s \xrightarrow{\leq n} C \right\}}_{p(s, n, C)} \leq \Pr \left\{ s' \xrightarrow{\leq n} C \right\} \quad \text{for any } n \geq 0$$

where

$$p(s, n, C) = \begin{cases} 1 & \text{if } s \in C \\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot p(s', n-1, C) & \text{if } s \notin C \text{ and } n > 0 \\ 0 & \text{otherwise} \end{cases}$$

this can be generalized by forbidding paths that visit states in  $B \subseteq S$  with  $B = B \uparrow_{\sqsubseteq_p}$