

Probabilistic Process Algebra

Lecture #17 of Modeling Concurrent and Probabilistic Systems

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

July 3, 2009

Overview Lecture #17

⇒ *Probabilistic process algebra*

- Probabilistic transition systems
- Syntax (for sequential processes)
- Semantics

Motivation

- Realistic systems are complex and consist of many components
- ⇒ A monolithic modeling approach is insufficient
 - it will yield complicated and incomprehensible models
- Proposal: use a **compositional** approach
 - we will adopt **process algebra** as a framework
- Advantages:
 - models of components can be glued together to obtain complete system models
 - using (bi)simulation relations, models can be compared
 - if these notions are congruences, this comparison can be done component-wise
 - axioms can be used to simplify models at a syntactic level

first step: equip FPS with potential for interaction (= actions)

Fully probabilistic system

A *fully probabilistic system* (FPS) is a pair $\mathcal{D} = (S, \mathbf{P})$ where:

- S is a countable set of states
- $\mathbf{P} : S \times S \rightarrow [0, 1]$ is a **probability transition function** satisfying

$$\sum_{s' \in S} \mathbf{P}(s, s') \in [0, 1] \quad \text{for all } s \in S$$

Probabilistic transition system

A *probabilistic transition system* is a quadruple $(S, \text{Act}, \mathbf{P}, s_0)$ where

- S is a countable set of states and $s_0 \in S$ is the initial state
- Act is a countable set of actions, and
- $\mathbf{P} \in S \times \text{Act} \times S \rightarrow [0, 1]$ a transition probability function satisfying:

$$\sum_{\alpha} \sum_{s' \in S} \mathbf{P}(s, \alpha, s') \in [0, 1] \quad \text{for each } \alpha \in \text{Act} \text{ and } s \in S$$

ignoring actions yields a fully probabilistic system (FPS)

Probabilistic transition system

- $\mathbf{P}(s, \alpha, s')$ = probability to move from state s to s' by performing α
- For $C \subseteq S$, let $\mathbf{P}(s, \alpha, C) = \sum_{s' \in C} \mathbf{P}(s, \alpha, s')$
 - $\mathbf{P}(s, \alpha, C)$ is the probability to move from s to C by performing action α
- The deadlock probability of state s on action α is:

$$\mathbf{P}(s, \alpha, \perp) = 1 - \mathbf{P}(s, \alpha, S)$$

Example PTS

Button-pushing experiments on LTS

- Consider a *labelled* transition system
 - “buttons” of system = interface to outside world = observable actions
- Observer tries to depress one *of* several buttons
 - if button is unlocked and goes down \Rightarrow experiment is successful
 - otherwise, experiment fails
- In response to successful experiment, transition system evolves
 - probably nondeterministically
 - and is afterwards ready for further experimentation \Rightarrow transition system *reacts* to observer’s stimuli

Button-pushing experiments on PTS

- Consider a (generative) probabilistic transition system
- Observer may attempt to depress *several* buttons simultaneously
 - the process decides *probabilistically* which (if any) button will go down
- In response to successful experiment, transition system evolves
 - according to the distribution with which it selected the button, but
 - *conditioned* by button choice of observer

Example revisited

What is a probabilistic process algebra?

- It is a theory about *probabilistic processes*
- It is a theory about *concurrent* probabilistic processes
- It is an *algebra*
 - with probabilistic processes and actions as domain
 - with *operators* to combine processes (and actions)
 - with *laws* to rewrite processes into equivalent (= bisimilar) ones
- It supports *compositionality* and *abstraction*

how can such algebra be constructed for PTSs?

Preliminaries

- Let Act be a countable set of **actions** with $\tau \notin Act$
 - ranged over by α, β , and so on
 - there is no need here to distinguish names (like a) and co-names (e.g., \bar{a})
- Let Pid be a set of process identifiers
 - ranged over by X, Y and so on
- For simplicity, we first do **not** consider parallel composition

A process algebra for sequential processes

The set Prc_p of probabilistic process expressions is defined by the syntax:

- nil (inaction)
- $\alpha.P$ (prefixing)
- $\sum_{j \in J} [p_j] P_j$ (probabilistic choice)
 - where J is a finite index set and probability $p_j \in (0, 1)$ with $\sum_{j \in J} p_j = 1$
- $A(\alpha_1, \dots, \alpha_n)$ (process instantiation)
 - where $A \in Pid$ and $\alpha_i \in Act$ ($0 < i \leq n$)

there is no nondeterministic choice!

Recursive process definitions

A (recursive) process definition is an equation system of the form:

$$\{ A_i(\alpha_{i1}, \dots, \alpha_{in_i}) = P_i \mid 0 < i \leq k \}$$

where $k > 0$, $A_i \in Pid$ (pairwise different), $\alpha_{ij} \in Act$, and $P_i \in Prc_p$
(with process identifiers from $\{ A_1, \dots, A_k \}$)

Meaning of process algebra constructs

- nil is an **inactive** process that cannot do anything
- $\alpha.P$ may execute action α and then behaves like P
- $\sum_{j \in J} [p_j] P_j$ denotes a **probabilistic choice**:
 - process P_j is selected with probability p_j
- The behavior of a **process call** $A(\alpha_1, \dots, \alpha_n)$ is defined by the right-hand side of the equation $A = P$ where $\alpha_1, \dots, \alpha_n$ replace the formal parameters

Semantics

- The semantics of term $P \in Prc_p$ is a **PTS**
 - recall that the semantics of term $P \in Prc$ (non-probabilistic) is an LTS
- The transition probability relation is defined using derivation rules of the form:
$$\frac{\text{premise(s)}}{\text{conclusion}} \quad (\text{rule name})$$
- The initial state of the PTS is the term P
- The state space is the set of derivatives of P

for simplicity, let us first consider the derivation rules while ignoring the probabilities

Non-probabilistic semantics

A process definition $A_i(\alpha_{i1}, \dots, \alpha_{in_i})$ determines the PTS

$$(Prc_p, \mathbf{Act}, \mathbf{P}, A_i(\alpha_{i1}, \dots, \alpha_{in_i}))$$

whose transitions can be derived by the following rules:

$$\overline{\alpha.P \xrightarrow{\alpha} P} \text{ (Act)}$$

$$\frac{A(\vec{\alpha}) = P \quad P[\vec{\alpha} \mapsto \vec{\beta}] \xrightarrow{\alpha} P'}{A(\vec{\beta}) \xrightarrow{\alpha} P'} \text{ (Call)}$$

$$\frac{P_k \xrightarrow{\alpha} P' \quad k \in J}{\sum_{j \in J} [p_j]P_j \xrightarrow{\alpha} P'} \text{ (Psum)}$$

let us now consider the transition probabilities

Naive, incorrect semantics

$$\overline{\alpha.P \xrightarrow{\alpha, \mathbf{1}} P} \quad (\text{Act})$$

$$\frac{A(\vec{\alpha}) = P \quad P[\vec{\alpha} \mapsto \vec{\beta}] \xrightarrow{\alpha, \mathbf{p}} P'}{A(\vec{\beta}) \xrightarrow{\alpha, \mathbf{p}} P'} \quad (\text{Call})$$

$$\frac{P_k \xrightarrow{\alpha, \mathbf{p}} P' \quad k \in J}{\sum_{j \in J} [p_j]P_j \xrightarrow{\alpha, \mathbf{p}_k \cdot \mathbf{p}} P'} \quad (\text{Psum})$$

Naive, incorrect semantics

$$\frac{}{\alpha.P \xrightarrow{\alpha,1} P} \text{ (Act)}$$

$$\frac{A(\vec{\alpha}) = P \quad P[\vec{\alpha} \mapsto \vec{\beta}] \xrightarrow{\alpha,p} P'}{A(\vec{\beta}) \xrightarrow{\alpha,p} P'} \text{ (Call)}$$

$$\frac{P_k \xrightarrow{\alpha,p} P' \quad k \in J}{\sum_{j \in J} [p_j]P_j \xrightarrow{\alpha,p_k \cdot p} P'} \text{ (Psum)}$$

- process $\alpha.\text{nil} \oplus_{\frac{1}{2}} \alpha.\text{nil}$ should terminate with probability one
- but the **only** transition that can be derived is: $\alpha.\text{nil} \oplus_{\frac{1}{2}} \alpha.\text{nil} \xrightarrow{\alpha,\frac{1}{2}} \text{nil!}$

⇒ need to distinguish between different applications of same derivation rule

Solution I: use **indexed** transitions

An **indexed** PTS is a quintuple (S, Act, P, J, s_0) where

- $S, s_0 \in S$, and Act are as before, and
- J is a set of **indices**, and
- $P \in S \times Act \times J \times S \rightarrow [0, 1]$ a transition probability function satisfying:
 1. $s \xrightarrow{i, \alpha, p} s'$ and $s \xrightarrow{i, \beta, q} t' \Rightarrow \alpha = \beta \wedge p = q \wedge s' = t'$
 2. $\sum_{\alpha} \sum_{j \in J} P(s, \alpha, j, S) \leq 1$ for each $s \in S$ and $\alpha \in Act$

notation: $P(s, \alpha, j, s') = p$ is written as $s \xrightarrow{j, \alpha, p} s'$

Indexed probabilistic semantics

$$\frac{}{\alpha.P \xrightarrow[0]{\alpha,1} P} \text{ (Act)}$$

$$\frac{A(\vec{\alpha}) = P \quad P[\vec{\alpha} \mapsto \vec{\beta}] \xrightarrow[\textcolor{blue}{j}]{\alpha,\textcolor{red}{p}} P'}{A(\vec{\beta}) \xrightarrow[\textcolor{blue}{j}]{\alpha,\textcolor{red}{p}} P'} \text{ (Call)}$$

$$\frac{P_k \xrightarrow[\textcolor{blue}{n}]{\alpha,\textcolor{red}{p}} P' \quad k \in J}{\sum_{j \in J} [p_j]P_j \xrightarrow[\textcolor{blue}{k.n}]{\alpha,\textcolor{red}{p_k \cdot p}} P'} \text{ (Psum)}$$

Indexed probabilistic semantics

$$\frac{}{\alpha.P \xrightarrow[0]{\alpha,1} P} \text{ (Act)}$$

$$\frac{A(\vec{\alpha}) = P \quad P[\vec{\alpha} \mapsto \vec{\beta}] \xrightarrow[j]{\alpha,p} P'}{A(\vec{\beta}) \xrightarrow[j]{\alpha,p} P'} \text{ (Call)}$$

$$\frac{P_k \xrightarrow[n]{\alpha,p} P' \quad k \in J}{\sum_{j \in J} [p_j]P_j \xrightarrow[k.n]{\alpha,p_k \cdot p} P'} \text{ (Psum)}$$

we now obtain $\alpha.\text{nil} \oplus_{\frac{1}{2}} \alpha.\text{nil} \xrightarrow[1.0]{\alpha,\frac{1}{2}} \text{nil}$ and $\alpha.\text{nil} \oplus_{\frac{1}{2}} \alpha.\text{nil} \xrightarrow[2.0]{\alpha,\frac{1}{2}} \text{nil}$, as desired

Example

What is the (indexed) PTS for the following process terms:

- $X = \alpha. \left(\beta.\text{nil} \oplus_{\frac{1}{3}} \gamma.\text{nil} \right) \oplus_{\frac{3}{4}} \gamma.\text{nil}$
- $X = \alpha.X \oplus_{\frac{1}{4}} Y$ and $Y = \alpha.Y \oplus_{\frac{1}{3}} X$

solution on the black board

Solution II: **separate** transitions and probabilities

Do not use transition indexes, but let \rightarrow be defined as for CCS:

$$\frac{}{\alpha.P \xrightarrow{\alpha} P} \quad \frac{P \xrightarrow{\alpha} P' \quad A = P}{A \xrightarrow{\alpha} P'} \quad \frac{P_k \xrightarrow{\alpha} P'}{\sum_{j \in J} [p_k]P_k \xrightarrow{\alpha} P'} \quad (k \in J)$$

and define \mathbf{P} as *the least solution* satisfying the recursive equations:

$$\begin{aligned} \mathbf{P}(\alpha.P, \alpha, P) &= 1 \\ \mathbf{P}(\sum_{j \in J} [p_j]P_j, \alpha, P) &= \sum_{j \in J} p_j \cdot \mathbf{P}(P_j, \alpha, P) \\ \mathbf{P}(A, \alpha, P') &= \mathbf{P}(P, \alpha, P') \quad \text{provided } A = P \text{ and } A \in Pid \end{aligned}$$

Example

Deadlock

Consider the sub-stochastic process:

$$P = \alpha.\text{nil} \oplus_{\frac{1}{3}} \text{nil}$$

- this process can perform action α with probability $\frac{1}{3}$, but
- deadlocks with probability $1 - \frac{1}{3}$

A (fully) stochastic semantics can be easily obtained:

- by adding a deadlock state $\perp \notin S$
- . . . and a special action $0 \notin Act$ such that
- for each state s with a “rest” probability $p > 0$,
- we add $s \xrightarrow{0,p} \perp$ (and thus $\text{nil} \xrightarrow{0,1} \perp$)

Restriction

- Recall the **restriction** operator of CCS:
 - $\text{new } \beta \ P$ declares β as a local name to P
- Formal semantics

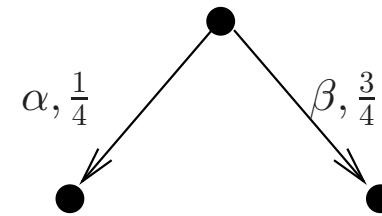
$$\frac{P \xrightarrow{\alpha} P' \quad \alpha \neq \beta}{\text{new } \beta \ P \xrightarrow{\alpha} \text{new } \beta \ P'} \text{ (New)}$$

- What does it mean **probabilistically** that action β is prohibited?

Restriction: an example



$$P = [\frac{1}{6}]\alpha.\text{nil} + [\frac{1}{2}]\beta.\text{nil} + [\frac{1}{3}]\gamma.\text{nil}$$



$$P \setminus \{\gamma\}$$

How can the result of restriction be justified?

Justification

- The probabilities in new β P are **conditioned** to not performing β
- These probabilities are **normalised**
 - the normalisation factor = probability that P does not perform β
- Normalisation can be seen as a repeated **experiment**:
 - probabilistically select one of the alternative transitions
 - in case a prohibited transition (i.e., β) has been selected, start over
 - continue this process until a possible transition (i.e., non- β) has been selected

Semantics of restriction

For $\beta \in Act$, the derivation rule for restriction new β P is:

$$\frac{P \xrightarrow{j}^{\alpha, \textcolor{red}{p}} P' \quad \alpha \neq \beta}{\text{new } \beta \ P \xrightarrow{j}^{\alpha, \frac{p}{\nu(P, \beta)}} \text{new } \beta \ P'} \quad (\text{New})$$

where

$$\nu(P, \beta) = 1 - \sum_j \{ \mid p \mid P \xrightarrow{j}^{\beta, p} P' \}$$

is the probability that P does not perform a β -transition

$\{ \dots \}$ denotes a bag, or a multiset