

Bisimulation and Parallel Composition

Lecture #18 of Modeling Concurrent and Probabilistic Systems

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl 2: Softwaremodeling and Verification

E-mail: katoen@cs.rwth-aachen.de

July 9, 2009

Overview Lecture #18

⇒ *Bisimulation and parallel composition*

- Process algebra for sequential processes
- Probabilistic bisimulation on PTS
- Congruence properties
- Synchronous parallel composition
- Restriction

A process algebra for sequential processes

The set Prc_p of probabilistic process expressions is defined by the syntax:

- nil (inaction)
- $\alpha.P$ (prefixing)
- $\sum_{j \in J} [p_j] P_j$ (probabilistic choice)
 - where J is a finite index set and probability $p_j \in (0, 1)$ with $\sum_{j \in J} p_j = 1$
- $A(\alpha_1, \dots, \alpha_n)$ (process instantiation)
 - where $A \in Pid$ and $\alpha_i \in Act$ ($0 < i \leq n$)

there is no nondeterministic choice!

Indexed probabilistic semantics

$$\overline{\alpha.P \xrightarrow[0]{\alpha,1} P} \quad (\text{Act})$$

$$\frac{A(\vec{\alpha}) = P \quad P[\vec{\alpha} \mapsto \vec{\beta}] \xrightarrow[\textcolor{blue}{j}]{\alpha,\textcolor{red}{p}} P'}{A(\vec{\beta}) \xrightarrow[\textcolor{blue}{j}]{\alpha,\textcolor{red}{p}} P'} \quad (\text{Call})$$

$$\frac{P_k \xrightarrow[\textcolor{blue}{n}]{\alpha,\textcolor{red}{p}} P' \quad k \in J}{\sum_{j \in J} [p_j]P_j \xrightarrow[\textcolor{blue}{k.n}]{\alpha,\textcolor{red}{p_k} \cdot p} P'} \quad (\text{Psum})$$

abbreviate $[p]P + [1-p]Q$ by $P \oplus_p Q$

Recursive equations

Alternatively, let \rightarrow be defined as for CCS:

$$\frac{}{\alpha.P \xrightarrow{\alpha} P} \quad \frac{P \xrightarrow{\alpha} P' \quad A = P}{A \xrightarrow{\alpha} P'} \quad \frac{P_k \xrightarrow{\alpha} P'}{\sum_{j \in J} [p_k]P_k \xrightarrow{\alpha} P'} \quad (k \in J)$$

and define \mathbf{P} as *the least solution* satisfying the recursive equations:

$$\begin{aligned} \mathbf{P}(\alpha.P, \alpha, P) &= 1 \\ \mathbf{P}(\sum_{j \in J} [p_j]P_j, \alpha, P) &= \sum_{j \in J} p_j \cdot \mathbf{P}(P_j, \alpha, P) \\ \mathbf{P}(A, \alpha, P') &= \mathbf{P}(P, \alpha, P') \quad \text{provided } A = P \text{ and } A \in Pid \end{aligned}$$

Probabilistic bisimulation

Objectives:

- Define probabilistic bisimulation on Prc_p
 - by lifting the notion of \sim_p on FPS to PTS
- Investigate the basic **properties** of probabilistic bisimulation
 - e.g., do we have $P \oplus_p \text{nil} \sim_p P$ for any $P \in Prc_p$?
- Investigate whether this is a **congruence**
 - e.g., $P \sim_p Q \Rightarrow P \oplus_q R \sim_p Q \oplus_q R$ for any $R \in Prc_p$ and $q \in (0, 1)$?

Probabilistic transition system

A *probabilistic transition system* (PTS) is a quadruple $(S, \text{Act}, \mathbf{P}, s_0)$ where

- S is a countable set of states and $s_0 \in S$ is the initial state
- Act is a set of actions, and
- $\mathbf{P} \in S \times \text{Act} \times S \rightarrow [0, 1]$ a transition probability function satisfying:

$$\sum_{\alpha} \sum_{s' \in S} \mathbf{P}(s, \alpha, s') \in [0, 1] \quad \text{for each } s \in S$$

Probabilistic bisimulation

- Let $(S, \mathbf{Act}, \mathbf{P}, s_0)$ be a PTS and R an equivalence relation on S
- R is a *probabilistic bisimulation* on S if for any $(s, s') \in R$:

$$\mathbf{P}(s, \alpha, C) = \mathbf{P}(s', \alpha, C) \quad \text{for all } C \text{ in } S/R \text{ and all } \alpha \in \mathbf{Act}$$

- s and s' are *probabilistically bisimilar*, notation $s \sim_p s'$, if:
 - there exists a probabilistic bisimulation R on S with $(s, s') \in R$
 - it follows that $s \sim_p s'$ implies $\mathbf{P}(s, \alpha, \perp) = \mathbf{P}(s', \alpha, \perp)$

Alternative definition of \sim_p

- Let $(S, \text{Act}, \mathbf{P}, s_0)$ be a PTS and R an equivalence relation on S
- R is a *probabilistic bisimulation* on S if for any $(s, s') \in R$ and $\alpha \in \text{Act}$:

$$\mathbf{P}(s, \alpha, \cdot) \equiv_R \mathbf{P}(s', \alpha, \cdot)$$

where \equiv_R denotes the lifting of R on $\text{Distr}(S)$ defined by:

$$\mu \equiv_R \mu' \text{ iff } \mu(C) = \mu'(C) \text{ for all } C \in S/R$$

as processes are states, \sim_p is also defined on the set Prc_p of processes

Properties of bisimulation (repetition)

$$P + \text{nil} \sim P \quad (\text{Identity})$$

$$P + Q \sim Q + P \quad (\text{Commutativity})$$

$$P + P \sim P \quad (\text{Absorption})$$

$$(P + Q) + R \sim P + (Q + R) \quad (\text{Associativity})$$

Properties of probabilistic bisimulation

$$P \oplus_{\textcolor{red}{p}} \text{nil} \not\sim_p P \quad (\text{Identity})$$

$$P \oplus_{\textcolor{red}{p}} Q \sim_p Q \oplus_{1-\textcolor{red}{p}} P \quad (\text{Commutativity})$$

$$P \oplus_{\textcolor{red}{p}} P \sim_p P \quad (\text{Absorption})$$

$$(P \oplus_{\textcolor{red}{p}'} Q) \oplus_{\textcolor{blue}{q}'} R \sim_p P \oplus_p (Q \oplus_q R) \quad (\text{Associativity})$$

where $p = \textcolor{red}{p}' \cdot \textcolor{blue}{q}'$, $(1-p) \cdot q = \textcolor{blue}{q}' \cdot (1-\textcolor{red}{p}')$ and $1-\textcolor{blue}{q}' = (1-p) \cdot (1-q)$

for unguarded recursion: $(A = P \oplus_p A) \sim_p (A = P)$

Proof

Properties of probabilistic bisimulation (revisited)

$$P \oplus_{\textcolor{red}{p}} \text{nil} \not\sim_p P \quad (\text{Identity})$$

$$P \oplus_p Q \sim_p Q \oplus_{1-p} P \quad (\text{Commutativity})$$

$$P \oplus_p P \sim_p P \quad (\text{Absorption})$$

$$\left(P \oplus_{\frac{p}{p+q}} Q \right) \oplus_{p+q} R \sim_p P \oplus_p \left(Q \oplus_{\frac{q}{1-p}} R \right) \quad (\text{Associativity})$$

Congruence properties for \sim_p

\sim_p is a *congruence* for prefixing and probabilistic choice:

- $P \sim_p Q \Rightarrow \alpha.P \sim_p \alpha.Q \quad \text{for all } \alpha$
 - Why? Relation $\{(\alpha.P, \alpha.Q) \mid P \sim_p Q\} \cup \sim_p$ is a probabilistic bisimulation
- $P \sim_p Q \Rightarrow P \oplus_p R \sim_p Q \oplus_p R \quad \text{for all } R$
 - Why? For arbitrary R :

$$\{ (P \oplus_p R, Q \oplus_p R) \mid P \sim_p Q \} \cup \sim_p$$
 is a probabilistic bisimulation
- $P \sim_p Q \Rightarrow R \oplus_p P \sim_p R \oplus_p Q \quad \text{for all } R$

recursion requires special treatment and is not considered here

Synchronous parallel composition

Consider just labeled transition systems.

- Let $* : Act \times Act \rightarrow Act$ map pairs of actions to actions
 - action $\alpha * \beta$ is the simultaneous execution of α and β
- $P \times Q$ denotes the **synchronous** composition of processes P and Q
- \times is defined by the inference rule:
$$\frac{P \xrightarrow{\alpha} P' \wedge Q \xrightarrow{\beta} Q'}{P \times Q \xrightarrow{\alpha * \beta} P' \times Q'}$$
- Expansion law for \times :

$$\sum_{i \in I} \alpha_i.P_i \times \sum_{j \in J} \beta_j.Q_j = \sum_{i,j \in I \times J} (\alpha_i * \beta_j).(P_i \times Q_j)$$

Example

$$P = a.\text{nil} + b.\text{nil} \quad \text{and} \quad Q = \bar{a}.\text{nil} + c.\text{nil} \quad \text{and} \quad P \times Q$$

Synchronous parallel composition

For $* : Act \times Act \rightarrow Act$, let the derivation rule for $P \times Q$ be:

$$\frac{P \xrightarrow{\alpha, \textcolor{red}{p}}_i P' \wedge Q \xrightarrow{\beta, \textcolor{blue}{q}}_j Q'}{P \times Q \xrightarrow{\alpha * \beta, \textcolor{red}{p} \cdot \textcolor{blue}{q}}_{(\textcolor{red}{i}, \textcolor{blue}{j})} P' \times Q'}$$

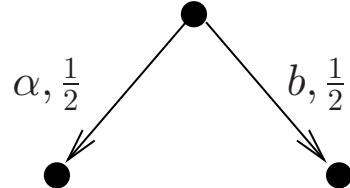
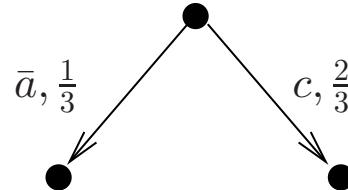
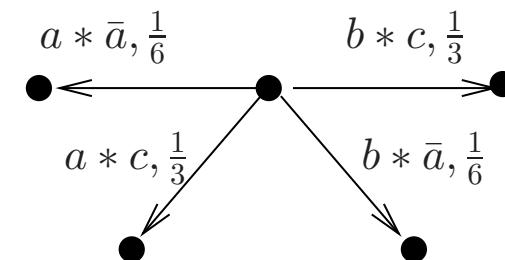
Expansion law for \times :

$$\sum_{i \in I} [p_i] \alpha_i.P_i \times \sum_{j \in J} [q_j] \beta_j.Q_j = \sum_{i, j \in I \times J} [p_i \cdot q_j] (\alpha_i * \beta_j).(P_i \times Q_j)$$

we obtain the product probability space due to stochastic independence of P and Q

Example of synchronous composition

$$P = a.\text{nil} \oplus_{\frac{1}{2}} b.\text{nil} \quad \text{and} \quad Q = \bar{a}.\text{nil} \oplus_{\frac{1}{3}} c.\text{nil} \quad \text{and} \quad P \times Q$$



⇒ PTSs and synchronous composition fit well together

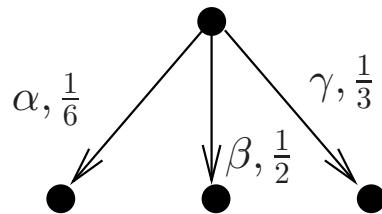
Restriction

- Recall the **restriction** operator of CCS:
 - $\text{new } \beta \ P$ declares β as a local name to P
- Formal semantics

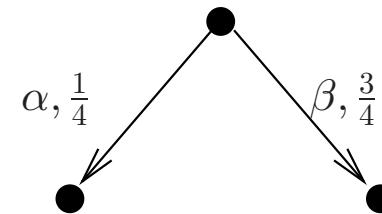
$$\frac{P \xrightarrow{\alpha} P' \quad \alpha \neq \beta}{\text{new } \beta \ P \xrightarrow{\alpha} \text{new } \beta \ P'} \text{ (New)}$$

- What does it mean **probabilistically** that action β is prohibited?

Restriction: an example



$$P = [\frac{1}{6}]\alpha.\text{nil} + [\frac{1}{2}]\beta.\text{nil} + [\frac{1}{3}]\gamma.\text{nil}$$



$$\text{new } \gamma \text{ } P$$

How can the result of restriction be justified?

Justification

- The probabilities in new β P are **conditioned** to not performing β
- These probabilities are **normalised**
 - the normalisation factor = probability that P does not perform β
- Normalisation can be seen as a repeated **experiment**:
 - probabilistically select one of the alternative transitions
 - in case a prohibited transition (i.e., β) has been selected, start over
 - continue this process until a possible transition (i.e., non- β) has been selected

Semantics of restriction

For $\beta \in Act$, the derivation rule for restriction new β P is:

$$\frac{P \xrightarrow{j}^{\alpha, \textcolor{red}{p}} P' \quad \alpha \neq \beta}{\text{new } \beta \ P \xrightarrow{j}^{\alpha, \frac{p}{\nu(P, \beta)}} \text{new } \beta \ P'} \quad (\text{New})$$

where

$$\nu(P, \beta) = 1 - \sum_j \{ \{ p \mid P \xrightarrow{j}^{\beta, p} P' \} \}$$

is the probability that P does not perform a β -transition

$\{ \dots \}$ denotes a bag, or a multiset

Asynchronous parallel composition

Recall the derivation rules for CCS:

$$\frac{P \xrightarrow{\alpha} P'}{P \parallel Q \xrightarrow{\alpha} P' \parallel Q} \quad \frac{Q \xrightarrow{\alpha} Q'}{P \parallel Q \xrightarrow{\alpha} P \parallel Q'} \quad \frac{P \xrightarrow{\lambda} P' \quad Q \xrightarrow{\bar{\lambda}} Q'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q'}$$

how can these rules be adapted to the probabilistic case?

example on the black board for probabilistic case

Example

Asynchronous parallel composition

- PTSs are closed under synchronous parallel composition
 - synchronous parallel composition can be defined in a rather straightforward way
- PTS are not closed under asynchronous parallel composition
 - as order of autonomous transitions (by P and Q) is not quantified

⇒ Nondeterminism is needed

- . . . but is not present in the model of PTS

- A more general model is needed: probabilistic automata