

Probabilistic Automata

Lecture #19 of Modeling Concurrent and Probabilistic Systems

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl 2: Softwaremodeling and Verification

E-mail: katoen@cs.rwth-aachen.de

July 10, 2008

Overview Lecture #22

⇒ *Probabilistic automata*

- Probabilistic automata
- Probabilistic (bi)simulation
- Probabilistic process algebra revisited

The importance of nondeterminism

- **Implementation freedom** as a specification
 - describes *what* the system should do, not *how* it must be implemented
- **Scheduling freedom**
 - no info about relative speeds of components
- **External environment**
 - do not stipulate how the environment will behave
- **Incomplete information**

“There is nothing mysterious about nondeterminism, it arises from the deliberated decision to ignore the factors which influence the selection”

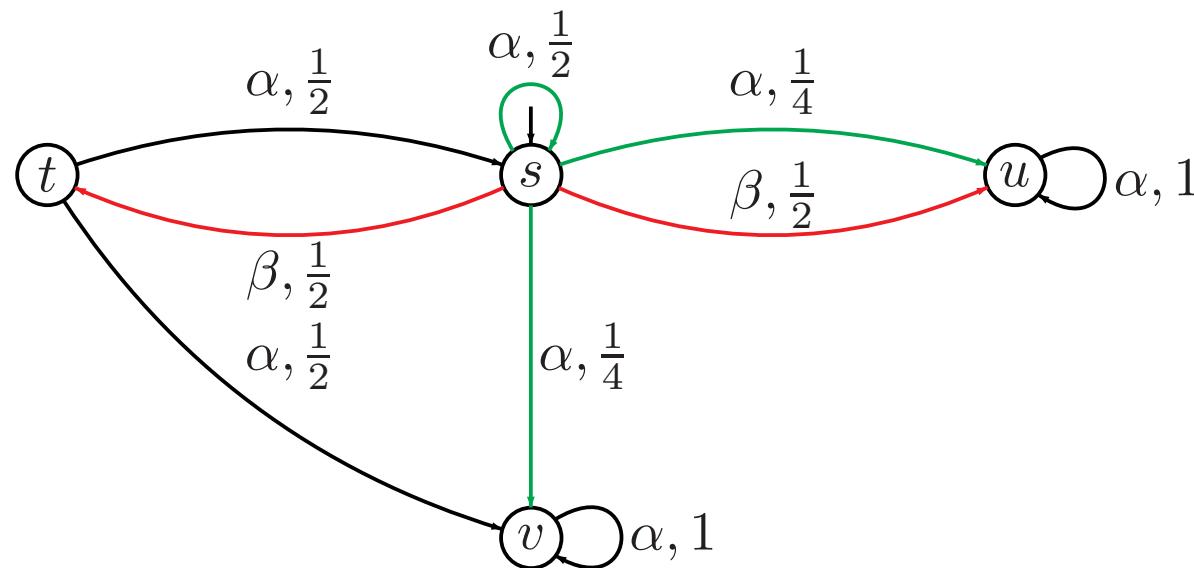
Probabilistic automata

A *probabilistic automaton* (PA) is a quadruple $(S, Act, \rightarrow, s_0)$ where

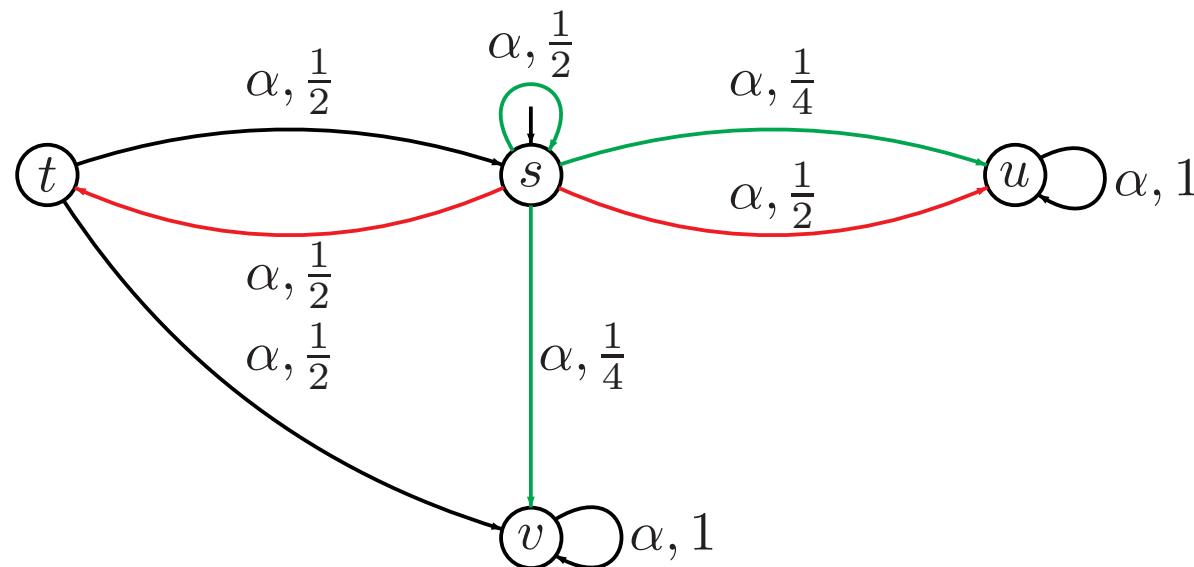
- S is a countable set of states
- Act is a countable set of actions, and
- $\rightarrow \subseteq S \times Act \times Distr(S)$ is a transition relation
- $s_0 \in S$ is the initial state

notation: $(s, \alpha, \mu) \in \rightarrow$ is written as $s \xrightarrow{\alpha} \mu$
set of steps in state s is $Steps(s) = \{ (\alpha, \mu) \mid s \xrightarrow{\alpha} \mu \}$

An example PA



Another example PA



Lossy communication channels

on the black board

Reactive probabilistic automata

- Probabilistic automaton $(S, Act, \rightarrow, s_0)$ is called *reactive* whenever

$$(s \xrightarrow{\alpha} \mu \quad \text{and} \quad s \xrightarrow{\alpha} \nu) \quad \Rightarrow \quad \mu = \nu$$

- The induced transition probability function $\mathbf{P} : S \times Act \times S \rightarrow [0, 1]$ is given by:

$$\mathbf{P}(s, \alpha, s') = \begin{cases} \mu(s') & \text{if } s \xrightarrow{\alpha} \mu \\ 0 & \text{otherwise} \end{cases}$$

- A PA is *non-probabilistic* if for any s : $s \xrightarrow{\alpha} \mu \Rightarrow \mu(s') = 1$ for some s'

reactive PTSs and TSs are thus subsumed by probabilistic automata

Paths

- A *path* of a PA is an alternating, finite or infinite, sequence

$$s_0 \xrightarrow{\alpha_1, \mu_1} s_1 \xrightarrow{\alpha_2, \mu_2} s_2 \xrightarrow{\alpha_3, \mu_3} s_3 \dots$$

such that $s_i \xrightarrow{\alpha_{i+1}} \mu_{i+1}$ and $\mu_{i+1}(s_{i+1}) > 0$

- Let $Paths(\mathcal{M})$ the set of paths that start in the initial state of PA \mathcal{M}
 - $Paths_{fin}(\mathcal{M})$ is the set of finite paths that start in s_0
 - a finite path σ ends in a state, denoted $last(\sigma)$

some example paths of our example on the black board

Probabilistic bisimulation

- Let $(S, Act, \rightarrow, s_0)$ be a PA and R an equivalence relation on S
- R is a *probabilistic bisimulation* on S if for any $(s, s') \in R$:
if $s \xrightarrow{\alpha} \mu$ then $s' \xrightarrow{\alpha} \mu'$ for some μ' and $\mu \equiv_R \mu'$
- s and s' are *probabilistic bisimilar*, notation $s \sim_p s'$, if:
there exists a probabilistic bisimulation R on S with $(s, s') \in R$

Probabilistic simulation

- Let $(S, Act, \rightarrow, s_0)$ be a PA and R a binary relation on S
- R is a *probabilistic simulation* on S if for any $(s, s') \in R$:
if $s \xrightarrow{\alpha} \mu$ then $s' \xrightarrow{\alpha} \mu'$ for some μ' and $\mu \sqsubseteq_R \mu'$
- s' probabilistically simulates s , notation $s \sqsubseteq_p s'$, if:
there exists a probabilistic simulation R on S with $(s, s') \in R$

Examples

Combined transitions

- $s \xrightarrow{\alpha} \mu$ is a *combined* transition if
 - μ is a *convex combination* of the distributions

$$Distr(s, \alpha) = \{ \mu_i \mid s \xrightarrow{\alpha} \mu_i \}$$

- this means: for each μ_i there is a nonnegative real r_i with

$$\sum_i r_i = 1 \quad \text{and} \quad \mu = \sum_{\mu_i \in Distr(s, \alpha)} r_i \cdot \mu_i$$

- Combined transitions := *convex combinations* of existing transitions

Combined bisimulation

- Let (S, Act, \rightarrow) be a PA and R an equivalence relation on S
- R is a *combined* probabilistic bisimulation on S if for any $(s, s') \in R$:

if $s \xrightarrow{\alpha} \mu$ then $\underbrace{s' \xrightarrow{\alpha} \mu'}_{\text{combined transition}}$ for some μ' and $\mu \equiv_R \mu'$

- s and s' are combined probabilistic bisimilar, notation $s \sim_{cp} s'$, if:
 \exists a combined probabilistic bisimulation R on S with $(s, s') \in R$

in a similar way, \sqsubseteq_{cp} can be defined

Example

Properties

- \sqsubseteq_p is a pre-order
- \sim_{cp} is coarser than \sim_p :

$$s \sim_p s' \Rightarrow s \sim_{cp} s' \quad \text{but not necessarily the converse}$$

- Simulation equivalence $\simeq_p = \sqsubseteq_p \cap \sqsubseteq_p^{-1}$ is coarser than \sim_p :

$$s \sim_p s' \Rightarrow s \simeq_p s' \quad \text{but not necessarily the reverse}$$

- For reactive PA, \simeq_p and \sim_p coincide!
 - this is the analogue for deterministic LTSs where \sim and \simeq coincide

Probabilistic process algebra revisited

The set Prc_p of probabilistic process expressions is defined by the syntax:

- nil (inaction)
- $P + P$ (choice)
- $\alpha. \left(\sum_{j \in J} [p_j] P_j \right)$ (probabilistic choice)
 - where J is a finite index set and probability $p_j \in (0, 1)$ with $\sum_{j \in J} p_j = 1$
- $A(\alpha_1, \dots, \alpha_n)$ (process instantiation)
 - where $A \in Pid$ and $\alpha_i \in Act$ ($0 < i \leq n$)

Operational semantics

The semantics of P is given by a PA $PA(P)$ where \rightarrow is defined by:

$$\frac{P \xrightarrow{\alpha} \mu}{P + Q \xrightarrow{\alpha} \mu} \text{ (Sum1)} \quad \frac{Q \xrightarrow{\alpha} \mu}{P + Q \xrightarrow{\alpha} \mu} \text{ (Sum2)}$$

$$\frac{A(\vec{\alpha}) = P \quad P[\vec{\alpha} \mapsto \vec{\beta}] \xrightarrow{\alpha} \mu}{A(\vec{\beta}) \xrightarrow{\alpha} \mu} \text{ (Call)}$$

$$\frac{\mu(P) = \sum_{j \in J, P_j = P} p_j}{\alpha \cdot \left(\sum_{j \in J} [p_j] P_j \right) \xrightarrow{\alpha} \mu} \text{ (Psum)}$$

Properties of probabilistic bisimulation

$$P + \text{nil} \sim_p P \quad (\text{Identity})$$

$$P + Q \sim_p Q + P \quad (\text{Commutativity})$$

$$P + P \sim_p P \quad (\text{Absorption})$$

$$(P + Q) + R \sim_p P + (Q + R) \quad (\text{Associativity})$$

$$\alpha.(P \oplus_p Q) \sim_p \alpha.(Q \oplus_{1-p} P) \quad (\text{PCommutativity})$$

$$\alpha.(P \oplus_p P) \sim_p \alpha.P \quad (\text{PAbsorption})$$

$$\alpha. \left(\left(P \oplus_{\frac{p}{p+q}} Q \right) \oplus_{p+q} R \right) \sim_p \alpha. \left(P \oplus_p \left(Q \oplus_{\frac{q}{1-p}} R \right) \right) \quad (\text{PAssociativity})$$

Restriction

For $\beta \in Act$, the derivation rule for restriction new βP is:

$$\frac{P \xrightarrow{\alpha} \mu \quad \alpha \neq \beta}{\text{new } \beta P \xrightarrow{\alpha} \nu} \text{ (New)}$$

where $\nu(\text{new } \beta P) = \mu(P)$

Asynchronous CSP-like parallel composition

performing autonomous actions

$$\frac{P \xrightarrow{\alpha} \mu \quad \alpha \notin H}{P \parallel_H Q \xrightarrow{\alpha} \nu} \text{ (Par1)} \quad \text{where} \quad \begin{aligned} \nu(P' \parallel_H Q) &= \mu(P') \\ \nu(\text{new } H \ Q) &= \mu(\text{nil}) \end{aligned}$$

and, symmetrically

$$\frac{Q \xrightarrow{\alpha} \mu \quad \alpha \notin H}{P \parallel_H Q \xrightarrow{\alpha} \nu} \text{ (Par2)} \quad \text{where} \quad \begin{aligned} \nu(P \parallel_H Q') &= \mu(Q') \\ \nu(\text{new } H \ P) &= \mu(\text{nil}) \end{aligned}$$

where $\text{new } H \ P$ with $H = \{ \alpha_1, \dots, \alpha_n \}$ equals $\text{new } \alpha_1 \dots \text{new } \alpha_n \ P$

Asynchronous parallel composition

performing synchronisations

$$\frac{P \xrightarrow{\alpha} \mu \quad \text{and} \quad Q \xrightarrow{\alpha} \mu'}{P \parallel_H Q \xrightarrow{\alpha} \nu} \quad (\alpha \in H)$$

where

$$\nu(P' \parallel_H Q') = \mu(P') \cdot \mu'(Q')$$

parallel composition amounts to the product probability spaces

Example

Expansion law

on the black board

Congruence properties

- if $P_j \sim_p Q_j$ for all $j \in J$ then $\alpha \cdot \left(\sum_{j \in J} [p_j] P_j \right) \sim_p \alpha \cdot \left(\sum_{j \in J} [p_j] Q_j \right)$ for any $\alpha \in \text{Act}$
- if $P \sim_p Q$ then $P + R \sim_p Q + R$ and $R + P \sim_p R + Q$ for any R
- if $P \sim_p Q$ then $\text{new } \alpha \text{ } P \sim_p \text{new } \alpha \text{ } Q$ for any $\alpha \in \text{Act}$
- if $P \sim_p P'$ and $Q \sim_p Q'$ then $P \parallel_H Q \sim_p P' \parallel_H Q'$ for any H

it can also be proven that \sqsubseteq_p is a pre-congruence