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#20: Continuous-Time Markov Chains MCPS

Overview Lecture #20

e Exponential distribution and its properties

e Continuous-time Markov chains (CTMCs)

— definition and examples

— race condition

— transient distribution: uniformization
— steady-state distribution
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Time in DTMCs

e Time in a DTMC proceeds in discrete steps

e Two possible interpretations

— accurate model of (discrete) time units
x e.d., clock ticks in model of an embedded device
— time-abstract

* Nno information assumed about the time transitions take

e Continuous-time Markov chains (CTMCSs)

— dense model of time
— transitions can occur at any (real-valued) time instant
— modelled using negative exponential distributions
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Continuous random variables

e X is arandom variable (r.v., for short)

— on a sample space with probability measure Pr
— assume the set of possible values of X is a continuous interval

e X is continuously distributed if there exists a function f(z) such that:

d
Pr{X <d} = / f(x) dxr for each real number d

where f satisfies: f(x) >0 forallz and / flz)de =1

— Fx(d) = Pr{X < d} is the (cumulative) probability distribution function
— f(x) is the probability density function
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Example
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Exponential distribution
Continuous r.v. X is exponential with parameter A > 0 if its density is
f(zx) =Xe ™* forz >0 and0 otherwise

Cumulative distribution of X:

o Pr{X >d} =e
o expectation E[X] = [“x-X-e M dx =

0
e variance Var[X] = 5

>
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Exponential pdf and cdf

the higher )\, the faster the cdf approaches 1
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Exponential distributions

e Have nice mathematical properties (cf. next slide)

e Are adequate for many real-life phenomena

— the time until a radioactive particle decays

— the constant hazard rate portion of the bathtub curve in reliability theory
— the time it takes before your next telephone call

— times for reactions between proteins to occur

e Can approximate general distributions arbitrarily closely

— phase-type distributions

e Maximal entropy probability distribution if just the mean is known
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Properties

e An exponential distribution possesses the memory-less property
Pr{X >t+d| X >t} = Pr{X > d}
— exponential distributions are the only memoryless continuous distributions
e Let X and Y be exponential random variables with rate A and u
e min(X,Y) is exponentially distributed with rate A+
o Pr{X =min(X,Y)} = 135

e max(X,Y) IS not an exponential, but a phase-type distribution

= exponential distributions are closed under min, but not under max
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Proofs
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Continuous-time Markov chain

e A time-homogeneous continuous-time Markov chain (CTMC) is

— a Markov process
— with continuous parameter 7" and discrete state space X (t)
— which is time-homogeneous

e ps(t) =Pr{ X(t) = s} probability to be in state s at time instant ¢

— this depends on the starting distribution
e Probability of being in state s’ at time ¢t when in s at step t’ < t:

pss(t't) = Pr{X()=s[X()=s}
— Pr{X(t—t)=5|X(0)=s)
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Another perspective

A continuous-time Markov chain (CTMC) is a tuple (S, R) where:
e S'is a countable set of states

e R:5 x5 — R, arate matrix

— R(s, s’) = X means that the average speed of going from s to s’ is %

o B(s) =) scqR(s,5) = R(s,9) is the exit rate of state s

— s is called absorbing when E(s) = 0

a CTMC is a transition system (unlabeled transitions)
where transitions are equipped with continuous probabilities
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A CTMC modeling a simple queue

Modelling a queue of jobs
— Initially the queue is empty
— jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3)
— Jjobs are served with rate 3 (i.e. mean service time is 1/3)
— maximum size of the queue is 3
— state space: S = {s,};_, 3 Where s, indicates i jobs in queue

{empty} 3/2 3/2 3/2 (full}
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MCPS

Modelling techniques for CTMCs

e Stochastic Petri nets

e Markovian queueing networks

e Stochastic automata networks

e Stochastic activity networks

e Stochastic process algebra

e Probabilistic input/output automata

and many variants thereof

[Molloy 1977]

[Kleinrock 1975]

[Plateau 1985]

[Meyer & Sanders 1985]

[Herzog et al., Hillston 1993]

[Smolka et al. 1994]
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Interpretation
e The probability that transition s — s’ is enabled in [0, ¢]:

1 — 6—R(s,s/)-t

e The probability to move from non-absorbing s to s’ in [0, ¢] is:

e (e

e The probability to take an outgoing transition from s within |0, ¢] is:

1 — 6—E(S)-t
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Time-abstract evolution of an example CTMC
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On the long run
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Embedded DTMC

The embedded DTMC of the CTMC (S, R) is (5, P) where

R(s,s’) :
P(s.s) = ey TE(s)>0
0 otherwise

aCTMC lits embedded DTMC
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Enzyme-catalysed substrate conversion

]

File Edit Wiew History Bookmarks Tools Help
& - - @ |\‘¢' http:/ren.wikipedia.org/wiki/Enzyme &l | v | B*]
reaction, the reaction is effectively irreversible. Under these conditions the enzyme will, in fact, only stabilizes the transition state, reducing the energy nesded to -
catalyze the reaction in the thermodynamically allowed direction form this species and thus reducing the energy required to
form products.
Kinetics
Main arficle: Enzyme Kinetics
Catalyii Enzyme kinetics is the investigation of how enzymes bind substrates and turn them into products. The
alalytic step rate data used in kinetic analyses are obtained from enzyme assays.
1
In 1902 Victor Henri P proposed a quantitative theory of enzyme kinetics, but his experimental data
E+S<—=—ES ——E+P
+ ——— + were not useful because the significance of the hydrogen ion concentration was not yet appreciated.
- After Peter Lauriz Serensen had defined the logarithmic pH-scale and introduced the concept of
Substrate binding buffering in 1909 the German chemist Leonor Michaelis and his Ganadian postdoc Maud Leonora
Mechanism for a single substrate enzyme catal yzed fow| Menten repeated Henri's experiments and confirmed his equation which is referred to as J
reaction. The enzyme (E) binds a subetrate (S) and produces. Henri-Michaelis-Menten kinetics (semetimes also Michaelis-Menten kineﬂcs}.m Their work was further
ALLERER Y developed by G. E. Briggs and J. B. 5. Haldane, who derived kinetic equations that are still widely
used today. ¥
The major contribution of Henri was to think of enzyme reactions in two stages. In the first, the substrate binds reversibly to the enzyme, forming the
enzyme-substrate complex. This is sometimes called the Michaelis complex. The enzyme then catalyzes the chemical step in the reaction and releases the
product
Enzymes can catalyze up to several million reactions per second. For example, the reaction catalyzed
by orofidine 5'-phosphate decarboxylase will consume half of its substrate in 78 million years if no
enzyme is present. However, when the decarboxylase is added, the same process takes just 25
milliseconds Enzyme rates depend on solution conditions and subsirate concentration. Conditions [
that denature the protein abolish enzyme activity, such as high temperatures, extremes of pH or high =
5
salt concentrations, while raising substrate conceniration tends to increase activity. To find the §
maximum speed of an enzymatic reaction, the substrate concentration is increased until a constant rate 2
of product formation is seen. This is shown in the saturation curve on the right. Saturation happens .
because, as subsirate concentration increases, more and more of the free enzyme is converted into 0.05 e
the substrate-bound ES form. At the maximum velocity (V__ ) of the enzyme, all the enzyme active 0.00 . - . ,
max 0 1000 2000 3000 4000
sites are bound to substrate, and the amount of ES complex is the same as the total amount of Substrate concentration
enzyme. However, me‘ is only one kinetic constant of enzymes. The amount of substrate needed to Saturation curve for an enzyme reaction showing the &
achieve a given rate of reaction is also important. This is given by the Michaelis-Menten constant (K ), relation between the substrate concentration (8) and rate (v)
which is the substrate concentration required for an enzyme to reach one-half its maximum velogcity.
Each enzyme has a characteristic K_for a given substrate, and this can show how tight the binding of the substrate is to the enzyme. Another useful constant is hd
Done
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Enzyme-catalysed substrate conversion as a CTMC

init

States:  enzymes 2
substrate molecules 4

complex molecules 0

product molecules 0

2 1
0022 11000 110131999 (2004

" 1 0.001
Transitions: £ + S ? C ——FE+ P

0.001-z ¢

€.g., (xE7xSJxCJxP) (CBE +1l,zg,zc—1,2p + 1) for rc >0

goal

~ O O
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Transient distribution of a CTMC

Probability to be in state s at time ¢:

ps(t) = Pr{X(t)=s}
= 3 PHX(O) =} Pr{X() = 5| X(0) = '}
s'es

Using p(t) = (ps,(t), ps,(t), .., s, (t)) we obtain in matrix form:

p'(t)=p(t)-Q given p(0)

where Q = R — diag(F) is the infinitesimal generator matrix

p(t) is the transient-state probability vector at time ¢
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A triple modular redundant system

e 3 processors and a single voter:

— processors run same program; voter takes a majority vote
— each component (processor and voter) is failure-prone
— there is a single repairman for repairing processors and voter

oroc 1 e Modelling assumptions:

— if voter fails, entire system goes down

input utput

Proc 2

— after voter-repair, system starts “as new”

Proc 3

— State = (#processors, #voters)
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Modelling a TMR system as a CTMC

e processor failure rate is A fph;
Its repair rate is p rph

e Vvoter failure rate is v fph;
Its repair rate is  rph

e rate matrix: e.g., R((3,1),(2,1)) = 3\

e exitrates: e.g., F(3,1) = 3\+v

e probability matrix: e.g.,

P((3,1),(2,1)) = 3§iv
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Transient probabilities

1.000 ! ! ! ! 1: T T T T 3
|0
-1t 7T(§3.17 521, i) :
& F ™ ) .0 3
A
4 -;
_SKW(SRJ,SHJ.IS) 1
7 -6 F 3
09605+ ol o
0 2 4 , 6 8 10 0 2 4 , 6 8
Pss 1 (t) for first 10 hours p(t) for first 10 hours (logscale)

A = 0.01 failures per hour (fph), v = 0.001 fph
p = 1 repairs per hour (rph) and 6 = 0.2 rph

(© B.R. Haverkort)
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Steady-state distribution of a CTMC

Assuming a stationary distribution exists (e.g., finite and irreducible):

ps = limps(t) & limpl(t) =0 &  limps(t)-Q = 0

t— o0 t— o0 t— o0

Using p = (psgs Psy - - - » Ps;,) WE Obtain in matrix form:

p-Q =0 where 3} _.ps=1

p is the steady-state probability vector
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Steady-state distribution: example
+ Solve: T1-Q=0 and X 11(s)=1

-3/2 3/2 0 0 fempty} 3/2 3/2 3/2 (full}
Q- 3 -9/2 3/2 0
IEE T I O oo e
0 0 3 -3 3 3 3

-3/2-1(sy) + 3-7(s,) _
3/2-m(s,) - 9/2-m(s,) + 3-m(s,) -
3/2-m(s,) — 9/2-m(s,) + 3-m(s,) =

3/2-m(s,) - 3-m(s;) =

ms,) + Tms) + Ts,) + Ts) = 1

S O O O

m=[8/15,4/15,2/15,1/15]
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Steady-state distribution

| 53,1 | 52,1 | 51,1 | 50,1 | 50,0

S
p(s) | 9.655-107" | 2.893-10"% | 5.781-10™" | 5.775-10" " | 4.975-10"

The probability of > two processors and the voter are up is 0.994

A = 0.01 failures per hour (fph), v = 0.001 fph
p = 1 repairs per hour (rph) and 6 = 0.2 rph
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Computing transient probabilities

e Solution to p/(t) = p(t)-Q is: p(t) = p(0)-e?¥* = p(0) - Z (Q,.t)i (%)

7!
1=0
e Main problems: infinite summation + numerical instability due to

— Q' becomes non-sparse with positive and negative entries

e Solution: transform CTMC (S, R) into DTMC (S, U) with
- U =1+ 2with ¢ > max; { E(s;) }

uniformisation with g = A+p
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Uniformization

+ Uniformised DTMC unif(C) of CTMC C =(S,s;,i;,R,L):
— unif(C) = (S,s. .., Punif© )

init?
— set of states, initial state and labelling the same as C

— Punif(©) = | + Q/q
— |1s the |S|x|S| identity matrix
— q=max{E(s)|seStisthe uniformisation rate

» Each time step (epoch) of uniformised DTMC corresponds
to one exponentially distributed delay with rate g

— if E(s)=q transitions the same as embedded DTMC (residence
time has the same distribution as one epoch)

— If E(s)<q add self loop with probability 1-E(s)/q (residence
time longer than 1/q so one epoch may not be ‘long enough’)

© JPK 28



#20: Continuous-Time Markov Chains MCPS

Computing transient probabilities

o Now (*): p(t) = p(0)-e9VD" = p(0)-e™ 9%tV =y e_qtﬂ p(i)

= N !

i=0 N
Poisson prob.

e Summation can be truncated a priori for a given error bound «:

00 - k - o0
_qtlqt) ~ _gelqt)’ _qt(qt)"
D et = Y e =) = | D e )
i=0 i=0 i=ket1
= glat)’ S glat)
NI . —qt\t/ __ _ —q
e Choose k. minimal s.t.. ) e =1 D e T < e
i=keyq i=0

= Transient analysis of a CTMC = transient analysis of a DTMC
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Transient probabilities: example

« CTMC C, uniformised DTMC for q=3

@9 R= [(2) (3)} Q-= [_g - g} punif(c) _ {2 }H

+ Initial distribution: oo =[1, 0]
« Transient probabilities for time t = 1:

Rk if(C) |
o1 = Zi:O Yq-t,i *Ts00 '(Pum )

wonaly ovnal Jononal T

~ [ 0.404043, 0.595957 ]
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