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Overview Lecture #20

• Exponential distribution and its properties

• Continuous-time Markov chains (CTMCs)

– definition and examples
– race condition
– transient distribution: uniformization
– steady-state distribution
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Time in DTMCs

• Time in a DTMC proceeds in discrete steps

• Two possible interpretations

– accurate model of (discrete) time units
∗ e.g., clock ticks in model of an embedded device

– time-abstract
∗ no information assumed about the time transitions take

• Continuous-time Markov chains (CTMCs)

– dense model of time
– transitions can occur at any (real-valued) time instant
– modelled using negative exponential distributions
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Continuous random variables

• X is a random variable (r.v., for short)

– on a sample space with probability measure Pr

– assume the set of possible values of X is a continuous interval

• X is continuously distributed if there exists a function f(x) such that:

Pr{X � d} =
∫ d

−∞
f(x) dx for each real number d

where f satisfies: f(x) � 0 for all x and
∫ ∞

−∞
f(x) dx = 1

– FX(d) = Pr{X � d} is the (cumulative) probability distribution function
– f(x) is the probability density function
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Example
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Exponential distribution

Continuous r.v. X is exponential with parameter λ > 0 if its density is

f(x) = λ·e−λ·x for x > 0 and 0 otherwise

Cumulative distribution of X :

FX(d) =
∫ d

0

λ·e−λ·x dx = [−e−λ·x]d0 = 1 − e−λ·d

• Pr{X > d} = e−λ·d

• expectation E[X] =
R ∞

0
x·λ·e−λ·x dx = 1

λ

• variance Var[X] = 1
λ2
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Exponential pdf and cdf
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the higher λ, the faster the cdf approaches 1
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Exponential distributions

• Have nice mathematical properties (cf. next slide)

• Are adequate for many real-life phenomena

– the time until a radioactive particle decays
– the constant hazard rate portion of the bathtub curve in reliability theory
– the time it takes before your next telephone call
– times for reactions between proteins to occur

• Can approximate general distributions arbitrarily closely

– phase-type distributions

• Maximal entropy probability distribution if just the mean is known
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Properties

• An exponential distribution possesses the memory-less property

Pr{X > t + d | X > t} = Pr{X > d}

– exponential distributions are the only memoryless continuous distributions

• Let X and Y be exponential random variables with rate λ and µ

• min(X,Y ) is exponentially distributed with rate λ+µ

• Pr{X = min(X,Y )} = λ
λ+µ

• max(X,Y ) is not an exponential, but a phase-type distribution

⇒ exponential distributions are closed under min, but not under max
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Proofs
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Continuous-time Markov chain

• A time-homogeneous continuous-time Markov chain (CTMC) is

– a Markov process
– with continuous parameter T and discrete state space X(t)

– which is time-homogeneous

• ps(t) = Pr{X(t) = s } probability to be in state s at time instant t

– this depends on the starting distribution

• Probability of being in state s′ at time t when in s at step t′ < t:

ps,s′(t′, t) = Pr{X(t) = s′ | X(t′) = s }
= Pr{X(t−t′) = s′ | X(0) = s }
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Another perspective

A continuous-time Markov chain (CTMC) is a tuple (S,R) where:

• S is a countable set of states

• R : S × S → IR�0, a rate matrix

– R(s, s′) = λ means that the average speed of going from s to s′ is 1
λ

• E(s) =
∑

s′∈S R(s, s′) = R(s, S) is the exit rate of state s

– s is called absorbing when E(s) = 0

a CTMC is a transition system (unlabeled transitions)
where transitions are equipped with continuous probabilities
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A CTMC modeling a simple queue
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Modelling techniques for CTMCs

• Stochastic Petri nets [Molloy 1977]

• Markovian queueing networks [Kleinrock 1975]

• Stochastic automata networks [Plateau 1985]

• Stochastic activity networks [Meyer & Sanders 1985]

• Stochastic process algebra [Herzog et al., Hillston 1993]

• Probabilistic input/output automata [Smolka et al. 1994]

and many variants thereof
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Interpretation

• The probability that transition s → s′ is enabled in [0, t]:

1 − e−R(s,s′)·t

• The probability to move from non-absorbing s to s′ in [0, t] is:

R(s, s′)
E(s)

·
(
1 − e−E(s)·t

)

• The probability to take an outgoing transition from s within [0, t] is:

1 − e−E(s)·t
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Time-abstract evolution of an example CTMC
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On the long run
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Embedded DTMC

The embedded DTMC of the CTMC (S,R) is (S,P) where

P(s, s′) =

{
R(s,s′)
E(s) if E(s) > 0

0 otherwise
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Enzyme-catalysed substrate conversion
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Enzyme-catalysed substrate conversion as a CTMC
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States: enzymes 2 2

substrate molecules 4 0
complex molecules 0 0
product molecules 0 4

Transitions: E + S
1�
1

C 0.001−−−−→E + P

e.g., (xE, xS, xC, xP )
0.001·xC−−−−−−−→ (xE + 1, xS, xC − 1, xP + 1) for xC > 0
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Transient distribution of a CTMC

Probability to be in state s at time t:

ps(t) = Pr{X(t) = s }
=

∑
s′∈S

Pr{X(0) = s′ } · Pr{X(t) = s | X(0) = s′ }

Using p(t) = (ps0(t), ps1(t), . . . , psk
(t)) we obtain in matrix form:

p′(t) = p(t) · Q given p(0)

where Q = R − diag(E) is the infinitesimal generator matrix

p(t) is the transient-state probability vector at time t
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A triple modular redundant system

• 3 processors and a single voter:

– processors run same program; voter takes a majority vote
– each component (processor and voter) is failure-prone
– there is a single repairman for repairing processors and voter

Proc 1

Proc 2

Proc 3

input output

vote

vote

vote
Voter

• Modelling assumptions:

– if voter fails, entire system goes down

– after voter-repair, system starts “as new”

– state = (#processors, #voters)
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Modelling a TMR system as a CTMC
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• processor failure rate is λ fph;
its repair rate is µ rph

• voter failure rate is ν fph;
its repair rate is δ rph

• rate matrix: e.g., R((3, 1), (2, 1)) = 3λ

• exit rates: e.g., E(3, 1) = 3λ+ν

• probability matrix: e.g.,

P((3, 1), (2, 1)) =
3λ

3λ+ν

c© JPK 22



#20: Continuous-Time Markov Chains MCPS

Transient probabilities
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λ = 0.01 failures per hour (fph), ν = 0.001 fph
µ = 1 repairs per hour (rph) and δ = 0.2 rph

( c© B.R. Haverkort)
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Steady-state distribution of a CTMC

Assuming a stationary distribution exists (e.g., finite and irreducible):

ps = lim
t→∞ ps(t) ⇔ lim

t→∞ p′s(t) = 0 ⇔ lim
t→∞ ps(t) · Q = 0

Using p = (ps0, ps1, . . . , psk
) we obtain in matrix form:

p · Q = 0 where
∑

s∈S ps = 1

p is the steady-state probability vector
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Steady-state distribution: example
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Steady-state distribution

s s3,1 s2,1 s1,1 s0,1 s0,0

p(s) 9.655·10−1 2.893·10−2 5.781·10−4 5.775·10−6 4.975·10−3

The probability of � two processors and the voter are up is 0.994

λ = 0.01 failures per hour (fph), ν = 0.001 fph
µ = 1 repairs per hour (rph) and δ = 0.2 rph
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Computing transient probabilities

• Solution to p′(t) = p(t)·Q is: p(t) = p(0)·eQ·t = p(0) ·
∞∑

i=0

(Q·t)i

i!
(∗)

• Main problems: infinite summation + numerical instability due to

– Qi becomes non-sparse with positive and negative entries

• Solution: transform CTMC (S,R) into DTMC (S,U) with

– U := I + Q
q with q � maxi {E(si) }

λ λ

µ µ
µ
q

µ
q

λ
q

λ
q

λ
q

µ
q

uniformisation with q = λ+µ
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Uniformization

c© JPK 28



#20: Continuous-Time Markov Chains MCPS

Computing transient probabilities

• Now (*): p(t) = p(0)·eq(U−I)t = p(0)·e−qt·eqtU =
∞∑

i=0

e−qt(qt)
i

i!︸ ︷︷ ︸
Poisson prob.

p(i)

• Summation can be truncated a priori for a given error bound ε:∥∥∥∥∥
∞∑

i=0

e−qt(qt)
i

i!
p(i) −

kε∑
i=0

e−qt(qt)
i

i!
p(i)

∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑

i=kε+1

e−qt(qt)
i

i!
p(i)

∥∥∥∥∥∥

• Choose kε minimal s.t.:
∞∑

i=kε+1

e−qt(qt)
i

i!
= 1 −

kε∑
i=0

e−qt(qt)
i

i!
� ε

⇒ Transient analysis of a CTMC ≈ transient analysis of a DTMC
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Transient probabilities: example
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