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#21: (Bi)simulation on CTMCs MCPS

Overview Lecture #21

• Continuous-time Markov chains (CTMCs)

– definition and race condition

• Markovian bisimulation

– definition, quotient transition system, properties

• Weak Markovian bisimulation

• Markovian simulation

– definition, properties, examples
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Exponential distribution

Continuous r.v. X is exponential with parameter λ > 0 if its density is

f(x) = λ·e−λ·x for x > 0 and 0 otherwise

Cumulative distribution of X :

FX(d) =
∫ d

0

λ·e−λ·x dx = [−e−λ·x]d0 = 1 − e−λ·d

• Pr{X > d} = e−λ·d

• expectation E[X] =
R ∞

0
x·λ·e−λ·x dx = 1

λ

• variance Var[X] = 1
λ2
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Exponential pdf and cdf
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the higher λ, the faster the cdf approaches 1
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Exponential distributions

• Have nice mathematical properties (cf. next slide)

• Are adequate for many real-life phenomena

– the time until a radioactive particle decays
– the constant hazard rate portion of the bathtub curve in reliability theory
– the time it takes before your next telephone call
– times for reactions between proteins to occur

• Can approximate general distributions arbitrarily closely

– phase-type distributions

• Maximal entropy probability distribution if just the mean is known
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Properties

• An exponential distribution possesses the memory-less property

Pr{X > t + d | X > t} = Pr{X > d}

– exponential distributions are the only memoryless continuous distributions

• Let X and Y be exponential random variables with rate λ and µ

• min(X,Y ) is exponentially distributed with rate λ+µ

• Pr{X = min(X,Y )} = λ
λ+µ

• max(X,Y ) is not an exponential, but a phase-type distribution

⇒ exponential distributions are closed under min, but not under max
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CTMC definition

A continuous-time Markov chain (CTMC) is a tuple (S,R) where:

• S is a countable set of states

• R : S × S → IR�0, a rate matrix

– R(s, s′) = λ means that the average speed of going from s to s′ is 1
λ

• E(s) =
∑

s′∈S R(s, s′) = R(s, S) is the exit rate of state s

– s is called absorbing when E(s) = 0

a CTMC is a transition system (unlabeled transitions)
where transitions are equipped with continuous probabilities
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Interpretation

• The probability that transition s → s′ is enabled in [0, t]:

1 − e−R(s,s′)·t

• The probability to move from non-absorbing s to s′ in [0, t] is:

R(s, s′)
E(s)

·
(
1 − e−E(s)·t

)

• The probability to take an outgoing transition from s within [0, t] is:

1 − e−E(s)·t
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Embedded DTMC

The embedded DTMC of the CTMC (S,R) is (S,P) where

P(s, s′) =

{
R(s,s′)
E(s) if E(s) > 0

0 otherwise
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Enzyme-catalysed substrate conversion

c© JPK 10



#21: (Bi)simulation on CTMCs MCPS

Enzyme-catalysed substrate conversion as a CTMC
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substrate molecules 4 0
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Transitions: E + S
1�
1

C 0.001−−−−→E + P

e.g., (xE, xS, xC, xP )
0.001·xC−−−−−−−→ (xE + 1, xS, xC − 1, xP + 1) for xC > 0
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Transient distribution of a CTMC

Probability to be in state s at time t:

ps(t) = Pr{X(t) = s }
=

∑
s′∈S

Pr{X(0) = s′ } · Pr{X(t) = s | X(0) = s′ }

Using p(t) = (ps0(t), ps1(t), . . . , psk
(t)) we obtain in matrix form:

p′(t) = p(t) · Q given p(0)

where Q = R − diag(E) is the infinitesimal generator matrix

p(t) is the transient-state probability vector at time t
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Steady-state distribution of a CTMC

Assuming a stationary distribution exists (e.g., finite and irreducible):

ps = lim
t→∞ ps(t) ⇔ lim

t→∞ p′s(t) = 0 ⇔ lim
t→∞ ps(t) · Q = 0

Using p = (ps0, ps1, . . . , psk
) we obtain in matrix form:

p · Q = 0 where
∑

s∈S ps = 1

p is the steady-state probability vector
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Markovian bisimulation

• Let C = (S,R) be a CTMC and R an equivalence relation on S

• R is a Markovian bisimulation on S if for any (s, s′) ∈ R:

P(s, C) = P(s′, C) for all C ∈ S/R and E(s) = E(s′)︸ ︷︷ ︸
R(s,C) = R(s′,C)

• s and s′ are Markovian bisimilar (or: lumping equivalent), s ∼m s′, if:

∃ a Markovian bisimulation R on S with (s, s′) ∈ R
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Quotient transition system

For C = (S,R) and probabilistic bisimulation ∼m ⊆ S × S let

C/∼m = (S′,R′), the quotient of C under ∼m

where

• S′ = S/∼m= { [s]∼m | s ∈ S } with [s]∼m = { s′ ∈ S | s ∼m s′ }

• R′ : S′ × S′ → R�0 is defined such that for each s ∈ S and C ∈ S ′:

R′([s]∼m, C) = R(s, C)
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Preservation of state probabilities

• Let C = (S,R) be a CTMC with initial distribution p(0) and C/∼m the
quotient under ∼m

• For any C ∈ S0/∼m we have:

p′
C
(t) =

∑
s∈C

p
s
(t) for any t � 0

• If the steady-state distribution exists, then it follows:

p′
C

= lim
t→∞ p′

C
(t) = lim

t→∞

∑
s∈C

p
s
(t) =

∑
s∈C

p
s
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Example
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Probabilistic timed reachability

For any C ∈ S/∼m:

s ∼m s
′ ⇒ Pr

n
s

�t
� C

o
| {z }

p(s,t,C)

= Pr
n

s
′ �t
� C

o
for any t � 0

where p(s, t, C) = limn→∞ p(s, t, n, C) with:

p(s, t, n, C) =

8>>>><
>>>>:

1 if s ∈ CZ t

0

X
s′∈S

R(s, s′) · e−E(s)·x·p(s′, t−x, n−1, C) dx if s �∈ C and n > 0

0 otherwise

generalization possible by forbidding paths visiting B ∈ S/∼m
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Weak Markovian bisimulation

• Let C = (S,R) be a CTMC and R an equivalence relation on S

• R is a weak Markovian bisimulation on S if for any (s, s′) ∈ R:

R(s, C) = R(s′, C) for all C ∈ S/R with C 	= [s]R and C 	= [s′]R

• s and s′ are weak Markovian bisimilar s ≈m s′, if:

∃ a weak Markovian bisimulation R on S with (s, s′) ∈ R

obviously we have: s ∼m s′ ⇒ s ≈m s′
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Example
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Alternative definition of Markovian bisimulation

• Let C = (S,R) be a CTMC and R an equivalence relation on S

• R is a Markovian bisimulation on S if for any (s, s′) ∈ R:

P(s, ·) ≡R P(s′, ·) and E(s) = E(s′)︸ ︷︷ ︸
R(s,·) ≡R R(s′,·)

where ≡R denotes the lifting of R on Distr(S) defined by:

µ ≡R µ′ iff µ(C) = µ′(C) for all C ∈ S/R

c© JPK 23



#21: (Bi)simulation on CTMCs MCPS

Markovian simulation

• Let C = (S,R) be a CTMC and R a binary relation on S

• R is a Markovian simulation on S if for all (s, s′) ∈ R:

P(s, ·) �R P(s′, ·) and E(s) � E(s′)

• s′ simulates s, denoted s �m s′, if

∃ a Markovian simulation R on S such that (s, s′) ∈ R
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Example

s1

u1 v1

w1

1 1

2

s2

u2 u3 v2

w2 w3

1 1 2

7 300

s3

u4 u5 v3

w4 w5

1 1 4

7 300

s1 �m s2 but s2 	�m s3
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Probabilistic timed reachability

For any C ⊆ S such that C = C↑�m:

s �m s
′ ⇒ Pr

n
s

�t
� C

o
| {z }

p(s,t,C)

� Pr
n

s
′ �t
� C

o
for any t � 0

where p(s, t, C) = limn→∞ p(s, t, n, C) with:

p(s, t, n, C) =

8>>>><
>>>>:

1 if s ∈ CZ t

0

X
s′∈S

R(s, s′) · e−E(s)·x·p(s′, t−x, n−1, C) dx if s �∈ C and n > 0

0 otherwise

generalization possible by forbidding paths visiting B ⊆ S with B = B↑�m
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Proof
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Properties

• s ≈m s′ implies s ∼m s′ and s ∼m s′ implies s �m s′

• Markovian simulation equivalence 
m coincides with ∼m

• relationship to the embedded DTMC:

– s ∼m s′ in CTMC C implies s ∼p s′ in emb(C)

– s �m s′ in CTMC C implies s �p s′ in emb(C)

– s ≈m s′ in CTMC C implies s ≈p s′ in emb(C)

• if E(s) = E for any s we have:

– the reverse implications for emb(C) also hold
– ∼m and ≈m coincide, as well as ∼m and �m
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Relating (bi)simulation on CTMCs and DTMCs

�m

∼m


m 
d

�d

∼d

R −→ R′ means that R is coarser than R′
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