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#21. (Bi)simulation on CTMCs MCPS

Overview Lecture #21

e Continuous-time Markov chains (CTMCs)

— definition and race condition

e Markovian bisimulation

— definition, quotient transition system, properties

e \Weak Markovian bisimulation

e Markovian simulation

— definition, properties, examples
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Exponential distribution
Continuous r.v. X is exponential with parameter A > 0 if its density is
f(zx) =Xe ™* forz >0 and0 otherwise

Cumulative distribution of X:

o Pr{X >d} =e
o expectation E[X] = [“x-X-e M dx =

0
e variance Var[X] = 5

>
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Exponential pdf and cdf

the higher )\, the faster the cdf approaches 1
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Exponential distributions

e Have nice mathematical properties (cf. next slide)

e Are adequate for many real-life phenomena

— the time until a radioactive particle decays

— the constant hazard rate portion of the bathtub curve in reliability theory
— the time it takes before your next telephone call

— times for reactions between proteins to occur

e Can approximate general distributions arbitrarily closely

— phase-type distributions

e Maximal entropy probability distribution if just the mean is known
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Properties

e An exponential distribution possesses the memory-less property
Pr{X >t+d| X >t} = Pr{X > d}
— exponential distributions are the only memoryless continuous distributions
e Let X and Y be exponential random variables with rate A and u
e min(X,Y) is exponentially distributed with rate A+
o Pr{X =min(X,Y)} = 135

e max(X,Y) IS not an exponential, but a phase-type distribution

= exponential distributions are closed under min, but not under max
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CTMC definition

A continuous-time Markov chain (CTMC) is a tuple (S, R) where:
e S is a countable set of states

e R:S5 x5 — IR, arate matrix

— R(s, s’) = X means that the average speed of going from s to s’ is %

o K(s) =) .sc.qR(s,5) =R(s,9) is the exit rate of state s

— s is called absorbing when E(s) = 0

a CTMC is a transition system (unlabeled transitions)
where transitions are equipped with continuous probabilities
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Interpretation
e The probability that transition s — s’ is enabled in [0, ¢]:

1 — 6—R(s,s/)-t

e The probability to move from non-absorbing s to s’ in [0, ¢] is:

e (e

e The probability to take an outgoing transition from s within |0, ¢] is:

1 — 6—E(S)-t
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Embedded DTMC

The embedded DTMC of the CTMC (S, R) is (5, P) where

R(s,s’) :
P(s.s) = ey TE(s)>0
0 otherwise

aCTMC lits embedded DTMC
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Enzyme-catalysed substrate conversion

]

File Edit Wiew History Bookmarks Tools Help
& - - @ |\‘¢' http:/ren.wikipedia.org/wiki/Enzyme &l | v | B*]
reaction, the reaction is effectively irreversible. Under these conditions the enzyme will, in fact, only stabilizes the transition state, reducing the energy nesded to -
catalyze the reaction in the thermodynamically allowed direction form this species and thus reducing the energy required to
form products.
Kinetics
Main arficle: Enzyme Kinetics
Catalyii Enzyme kinetics is the investigation of how enzymes bind substrates and turn them into products. The
alalytic step rate data used in kinetic analyses are obtained from enzyme assays.
1
In 1902 Victor Henri P proposed a quantitative theory of enzyme kinetics, but his experimental data
E+S<—=—ES ——E+P
+ ——— + were not useful because the significance of the hydrogen ion concentration was not yet appreciated.
- After Peter Lauriz Serensen had defined the logarithmic pH-scale and introduced the concept of
Substrate binding buffering in 1909 the German chemist Leonor Michaelis and his Ganadian postdoc Maud Leonora
Mechanism for a single substrate enzyme catal yzed fow| Menten repeated Henri's experiments and confirmed his equation which is referred to as J
reaction. The enzyme (E) binds a subetrate (S) and produces. Henri-Michaelis-Menten kinetics (semetimes also Michaelis-Menten kineﬂcs}.m Their work was further
ALLERER Y developed by G. E. Briggs and J. B. 5. Haldane, who derived kinetic equations that are still widely
used today. ¥
The major contribution of Henri was to think of enzyme reactions in two stages. In the first, the substrate binds reversibly to the enzyme, forming the
enzyme-substrate complex. This is sometimes called the Michaelis complex. The enzyme then catalyzes the chemical step in the reaction and releases the
product
Enzymes can catalyze up to several million reactions per second. For example, the reaction catalyzed
by orofidine 5'-phosphate decarboxylase will consume half of its substrate in 78 million years if no
enzyme is present. However, when the decarboxylase is added, the same process takes just 25
milliseconds Enzyme rates depend on solution conditions and subsirate concentration. Conditions [
that denature the protein abolish enzyme activity, such as high temperatures, extremes of pH or high =
5
salt concentrations, while raising substrate conceniration tends to increase activity. To find the §
maximum speed of an enzymatic reaction, the substrate concentration is increased until a constant rate 2
of product formation is seen. This is shown in the saturation curve on the right. Saturation happens .
because, as subsirate concentration increases, more and more of the free enzyme is converted into 0.05 e
the substrate-bound ES form. At the maximum velocity (V__ ) of the enzyme, all the enzyme active 0.00 . - . ,
max 0 1000 2000 3000 4000
sites are bound to substrate, and the amount of ES complex is the same as the total amount of Substrate concentration
enzyme. However, me‘ is only one kinetic constant of enzymes. The amount of substrate needed to Saturation curve for an enzyme reaction showing the &
achieve a given rate of reaction is also important. This is given by the Michaelis-Menten constant (K ), relation between the substrate concentration (8) and rate (v)
which is the substrate concentration required for an enzyme to reach one-half its maximum velogcity.
Each enzyme has a characteristic K_for a given substrate, and this can show how tight the binding of the substrate is to the enzyme. Another useful constant is hd
Done
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Enzyme-catalysed substrate conversion as a CTMC

init

States:  enzymes 2
substrate molecules 4

complex molecules 0

product molecules 0

2 1
0022 11000 110131999 (2004

" 1 0.001
Transitions: £ + S ? C ——FE+ P

0.001-z ¢

€.g., (xE7xSJxCJxP) (CBE +1l,zg,zc—1,2p + 1) for rc >0

goal

~ O O
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Transient distribution of a CTMC

Probability to be in state s at time ¢:

ps(t) = Pr{X(t)=s}
= 3 PHX(O) =} Pr{X() = 5| X(0) = '}
s'es

Using p(t) = (ps,(t), ps,(t), .., s, (t)) we obtain in matrix form:

p'(t)=p(t)-Q given p(0)

where Q = R — diag(F) is the infinitesimal generator matrix

p(t) is the transient-state probability vector at time ¢
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Steady-state distribution of a CTMC

Assuming a stationary distribution exists (e.g., finite and irreducible):

ps = limps(t) & limpl(t) =0 &  limps(t)-Q = 0

t— o0 t— o0 t— o0

Using p = (psgs Psy - - - » Ps;,) WE Obtain in matrix form:

p-Q =0 where 3} _.ps=1

p is the steady-state probability vector
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Markovian bisimulation

e LetC = (S,R) be a CTMC and R an equivalence relation on S

e Ris a Markovian bisimulation on S if for any (s, s’) € R:

P(s,C) = P(s,C) forall CcS/R and FE(s) = E(s)
R(s,C) = R(s',C)

e s and s’ are Markovian bisimilar (or: lumping equivalent), s ~,, s', if:

1 a Markovian bisimulation R on S with (s,s’) € R
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Quotient transition system
For C = (.S, R) and probabilistic bisimulation ~,, C S x S let
C/~.n= (S R'), the quotient of C under ~,,
where
¢ S"=5/~p= {[s]l~,. |s€S}twith[s]. = {s€S]|s~,,s}
e R': 5" x5 — R is defined such that for each s € Sand C € 5"

R([s]~,.,C) = R(s,C)

m?
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Preservation of state probabilities

e LetC = (S,R) be a CTMC with initial distribution p(0) and C/ ~,,, the
guotient under ~,,

e Forany C € Sy/~,, we have:

p'.(t) =) p(t) foranyt=0
seC

e If the steady-state distribution exists, then it follows:

r . / 71 _
Ve = Jlimp' (1) = tlggog p,(t) = ; P,
S S

© JPK 17



#21:. (Bi)simulation on CTMCs MCPS

Example
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Probabilistic timed reachability

Forany C € S/ ~,,

S~y 8§ = Pr{ C} {’<t O} forany t >

p(s,t,C)

where p(s, t, C') = lim,, . p(s, t, n, C) with:
(1 ifs € C

p(s,t,n,C) = /ZR(S s') - e Bl p(s,t—x,n—1,C)dx ifsgCandn >0
s'esS

. O otherwise

generalization possible by forbidding paths visiting B € S/ ~,
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Weak Markovian bisimulation

e LetC = (S,R) be a CTMC and R an equivalence relation on S

e 1R is a weak Markovian bisimulation on §'if for any (s, s’) € R:

R(s,C) = R(s',C) forallC € S/Rwith C # [s]g and C # [s'|r

e s and s’ are weak Markovian bisimilar s ~,,, s, if:

1 a weak Markovian bisimulation R on S with (s,s’) € R

obviously we have: s ~,, s’ = s ~,, s’
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Example
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Alternative definition of Markovian bisimulation

e LetC = (S,R) be a CTMC and R an equivalence relation on S

e R is a Markovian bisimulation on S if for any (s, s’) € R:

P(s,-) =g P(s’,~)vand E(s) = E(s")

R(s,") =r R(s';")

where =p denotes the lifting of R on Distr(S) defined by:

w=gp g iff p(C)=y(C) forall CeS/R
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Markovian simulation

e LetC = (5,R) be a CTMC and R a binary relation on S

e R is a Markovian simulation on S if for all (s, s") € R:

P(s,-) Cr P(s,:) and E(s) < E(s)

e s’ simulates s, denoted s C,,, s/, if

1 a Markovian simulation R on S such that (s,s’) € R
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s1 Ty S2butsy 2, s3
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Probabilistic timed reachability
Forany C' C Ssuchthat C = CT, :

sC,,s = Pr{ C} < {’<t C} forany ¢t >

p(s,t,C’)
where p(s, t, C') = lim,, . p(s, t, n, C) with:
(1 ifs e C

p(s,t,n,C) = / Z R(s,s’) - e Bl p(s,t—x,n—1,C)dx ifsgCandn >0
s'esS
0 otherwise

\

generalization possible by forbidding paths visiting B C S with B = BT
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Proof
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Properties

e s~,, s impliess~,, s"and s ~,,, s’ implies s C,,, s’
e Markovian simulation equivalence ~,, coincides with ~,,

e relationship to the embedded DTMC:

— 8~y 8 In CTMC C implies s ~,, s" in emb(C)
— s C,, 8/ in CTMC C implies s C, s" inemb(C)
— 8 &, s in CTMC C implies s ~, s’ inemb(C)

e if F(s) = F for any s we have:

— the reverse implications for emb(C) also hold
- ~,, and =,,, coincide, as well as ~,,, and ,,
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Relating (bi)simulation on CTMCs and DTMCs

~m - — — — — e ————__ g ~d
A A
y y
|
>~m - — - =d
A A
. | o |
Con . ____ S

R — R’ means that R is coarser than R’
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