
Logical Methods in Computer Science
Vol. 4 (4:6) 2008, pp. 1–43
www.lmcs-online.org

Submitted Aug. 31, 2007
Published Nov. 11, 2008

FLOW FASTER: EFFICIENT DECISION ALGORITHMS FOR

PROBABILISTIC SIMULATIONS ∗

LIJUN ZHANG a, HOLGER HERMANNS b, FRIEDRICH EISENBRAND c, AND DAVID N. JANSEN d

a,b Department of Computer Science, Saarland University, Germany
e-mail address: {zhang,hermanns}@cs.uni-sb.de

c Department of Mathematics, EPFL, Switzerland
e-mail address: friedrich.eisenbrand@epfl.ch

d Software Modelling and Verification, RWTH Aachen University, Germany, and Model-Based Sys-
tem Development, Radboud University, Nijmegen, The Netherlands
e-mail address: D.Jansen@cs.ru.nl

Abstract. Strong and weak simulation relations have been proposed for Markov chains,
while strong simulation and strong probabilistic simulation relations have been proposed
for probabilistic automata. This paper investigates whether they can be used as effec-
tively as their non-probabilistic counterparts. It presents drastically improved algorithms
to decide whether some (discrete- or continuous-time) Markov chain strongly or weakly
simulates another, or whether a probabilistic automaton strongly simulates another. The
key innovation is the use of parametric maximum flow techniques to amortize compu-
tations. We also present a novel algorithm for deciding strong probabilistic simulation
preorders on probabilistic automata, which has polynomial complexity via a reduction
to an LP problem. When extending the algorithms for probabilistic automata to their
continuous-time counterpart, we retain the same complexity for both strong and strong
probabilistic simulations.

1. Introduction

Many verification methods have been introduced to prove the correctness of systems ex-
ploiting rigorous mathematical foundations. As one of the automatic verification techniques,
model checking has successfully been applied to automatically find errors in complex sys-
tems. The power of model checking is limited by the state space explosion problem. Notably,

1998 ACM Subject Classification: F.2.1, F.3.1, G.2.2, G.3.
Key words and phrases: Markov chains, strong- and weak-simulation, decision algorithms, parametric

maximum flow.
∗ An extended abstract of the paper has appeared in [45, 44].

a,b This work is supported by the DFG as part of the Transregional Collaborative Research Center SFB/TR
14 AVACS and by the European Commission under the IST framework 7 project QUASIMODO.

c Supported by Deutsche Forschungsgemeinschaft (DFG) within Priority Programme 1307 ”Algorithm
Engineering”.

d Work partly supported by the DFG Research Training Group AlgoSyn (project nr. 1298).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (4:6) 2008
c© L. Zhang, H. Hermanns, F. Eisenbrand, and D. N. Jansen
CC© Creative Commons

http://creativecommons.org/about/licenses

2 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

minimizing the system to the bisimulation [34, 35] quotient is a favorable approach. As a
more aggressive attack to the problem, simulation relations [33] have been proposed for
these models. In particular, they provide the principal ingredients to perform abstrac-
tions of the models, while preserving safe CTL properties (formulas with positive universal
path-quantifiers only) [16].

Simulation relations are preorders on the state space such that whenever state s′ sim-
ulates state s (written s - s′) then s′ can mimic all stepwise behaviour of s, but s′ may
perform steps that cannot be matched by s. One of the interesting aspects of simulation
relations is that they allow a verification by “local” reasoning. Based on this, efficient
algorithms for deciding simulation preorders have been proposed in [10, 23].

Randomisation has been employed widely for performance and dependability models,
and consequently the study of verification techniques of probabilistic systems with and with-
out nondeterminism has drawn a lot of attention in recent years. A variety of equivalence
and preorder relations, including strong and weak simulation relations, have been introduced
and widely considered for probabilistic models. In this paper we consider discrete-time
Markov chains (DTMCs) and discrete-time probabilistic automata (PAs) [39]. PAs extend
labelled transition systems (LTSs) with probabilistic selection, or, viewed differently, extend
DTMCs with nondeterminism. They constitute a natural model of concurrent computation
involving random phenomena. In a PA, a labelled transition leads to a probability distri-
bution over the set of states, rather than a single state. The resulting model thus exhibits
both non-deterministic choice (as in LTSs) and probabilistic choice (as in Markov chains).

Strong simulation relations have been introduced [26, 30] for probabilistic systems.
For s - s′ (s′ strongly simulates s), it is required that every successor distribution of s
via action α (called α-successor distribution) has a corresponding α-successor distribution
at s′. Correspondence of distributions is naturally defined with the concept of weight
functions [26]. In the context of model checking, strong simulation relations preserve safe
PCTL formulas [40]. Probabilistic simulation [40] is a relaxation of strong simulation in the
sense that it allows for convex combinations of multiple distributions belonging to equally
labelled transitions. More concretely, it may happen that for an α-successor distribution µ
of s, there is no α-successor distribution of s′ which can be related to µ, yet there exists a
so-called α-combined transition, a convex combination of several α-successor distributions
of s′. Probabilistic simulation accounts for this and is thus coarser than strong simulation,
but still preserves the same class of PCTL-properties as strong simulation does.

Apart from discrete time models, this paper considers continuous-time Markov chains
(CTMCs) and continuous-time probabilistic automata (CPAs) [29, 42]. In CPAs, the tran-
sition delays are governed by exponential distributions. CPAs can be considered also as
extensions of CTMCs with nondeterminism. CPAs are natural foundational models for
various performance and dependability modelling formalisms including stochastic activity
networks [37], generalised stochastic Petri nets [32] and interactive Markov chains [24].
Strong simulation and probabilistic simulation have been introduced for continuous-time
models [9, 44]. For CTMCs, s - s′ requires that s - s′ holds in the embedded DTMC, and
additionally, state s′ must be “faster” than s which manifests itself by a higher exit rate.
Both strong simulation and probabilistic simulation preserve safe CSL formulas [4], which
is a continuous stochastic extension of PCTL, tailored to continuous-time models.

Weak simulation is proposed in [9] for Markov chains. In weak simulation, the successor
states are split into visible and invisible parts, and the weight function conditions are
only imposed on the transitions leading to the visible parts of the successor states. Weak

DECIDING PROBABILISTIC SIMULATIONS 3

simulation is strictly coarser than the afore-mentioned strong simulation for Markov chains,
thus allows further reduction of the state space. It preserves the safe PCTL- and CSL-
properties without the next state formulas for DTMCs and CTMCs respectively [9].

Decision algorithms for strong and weak simulations over Markov chains, and for strong
simulation over probabilistic automata are not efficient, which makes it as yet unclear
whether they can be used as effectively as their non-probabilistic counterparts. In this paper
we improve efficient decision algorithms, and devise new algorithms for deciding strong and
strong probabilistic simulations for probabilistic automata. Given the simulation preorder,
the simulation quotient automaton is in general smaller than the bisimulation quotient
automaton. Then, for safety and liveness properties, model checking can be performed
on this smaller quotient automata. The study of decision algorithms is also important
for specification relations: The model satisfies the specification if the automaton for the
specification simulates the automaton for the model. In many applications the specification
cannot be easily expressed by logical formulas: it is rather a probabilistic model itself.
Examples of this kind include various recent wireless network protocols, such as ZigBee [21],
Firewire Zeroconf [11], or the novel IEEE 802.11e, where the central mechanism is selecting
among different-sided dies, readily expressible as a probabilistic automaton [31].

The common strategy used by decision algorithms for simulations is as follows. The
algorithm starts with a relation R which is guaranteed to be coarser than the simulation pre-
order -. Then, the relation R is successively be refined. In each iteration of the refinement
loop, pairs (s, s′) are eliminated from the relation R if the corresponding simulation condi-
tions are violated with respect to the current relation. In the context of labelled transitions
systems, this happens if s has a successor state t, but we cannot find a successor state t′ of s′

such that (t, t′) is also in the current relation R. For DTMCs, this correspondence is formu-
lated by the existence of a weight function for distributions (P(s, ·),P(s′, ·)) with respect
to the current relation R. Checking this weight function condition amounts to checking
whether there is a maximum flow over the network constructed out of (P(s, ·),P(s′, ·)) and
the current relation R. The complexity for one such check is however rather expensive, it
has time complexity O(n3/ log n). If the iterative algorithm reaches a fix-point, the strong
simulation preorder is obtained. The number of iterations of the refinement loop is at most
O(n2), and the overall complexity [3] amounts to O(n7/ log n) in time and O(n2) in space.

Fixing a pair (s, s′), we observe that the networks for this pair across iterations of the
refinement loop are very similar: They differ from iteration to iteration only by deletion of
some edges induced by the successive clean up of R. We exploit this by adapting a para-
metric maximum flow algorithm [18] to solve the maximum flow problems for the arising
sequences of similar networks, hence arriving at efficient simulation decision algorithms.
The basic idea is that all computations concerning the pair (s, s′) can be performed in an
incremental way: after each iteration we save the current network together with maximum
flow information. Then, in the next iteration, we update the network, and derive the max-
imum flow while using the previous maximum flow function. The maximum flow problems
for the arising sequences of similar networks with respect to the pair (s, s′) can be computed
in time O(|V |3) where |V | is the number of nodes of the network. This leads to an overall
time complexity O(m2n) for deciding the simulation preorder. Because of the storage of
the networks, the space complexity is increased to O(m2). Especially in the very common
case where the state fanout of a model is bounded by a constant g (and hence m ≤ gn),
our strong simulation algorithm has time and space complexity O(n2). The algorithm can
be extended easily to handle CTMCs with same time and space complexity. For weak

4 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

simulation on Markov chains, the parametric maximum flow technique cannot be applied
directly. Nevertheless, we manage to incorporate the parametric maximum flow idea into a
decision algorithm with time complexity O(m2n3) and space complexity O(n2). An earlier
algorithm [6] uses LP problems [27, 38] as subroutines. The maximum flow problem is a
special instance of an LP problem but can be solved much more efficiently [1].

We extend the algorithm to compute strong simulation preorder to also work on PAs.
It takes the skeleton of the algorithm for Markov chains: It starts with a relation R which is
coarser than -, and then refines R until - is achieved. In the refinement loop, a pair (s, s′)
is eliminated if the corresponding simulation conditions are violated with respect to the
current relation. For PAs, this means that there exists an α-successor distribution µ of s,
such that for all α-successor distribution µ′ of s′, we cannot find a weight function for (µ, µ′)
with respect to the current relation R. Again, as for Markov chains, the existence of such
weight functions can be reduced to maximum flow problems. Combining with the parametric
maximum flow algorithm [18], we arrive at the same time complexity O(m2n) and space
complexity O(m2) as for Markov chains. The above maximum flow based procedure cannot
be applied to deal with strong probabilistic simulation for PAs. The reason is that an α-
combined transition of state s is a convex combination of several α-successor distributions of
s, thus induces uncountable many such possible combined transitions. The computational
complexity of deciding strong probabilistic simulation has not been investigated before. We
show that it can be reduced to solving LP problems. The idea is that we introduce for each
α-successor distribution a variable, and then reformulates the requirements concerning the
combined transitions by linear constraints over these variables. This allows us to construct
a set of LP problem such that whether a pair (s, s′) should be thrown out of the current
pair R is equivalent to whether each of the LP problem has a solution.

The algorithms for PAs are then extended to handle their continuous-time analogon,
CPAs. In the algorithm, for each pair (s, s′) in the refinement loop, an additional rate
condition is ensured by an additional check via comparing the appropriate rates of s and
s′. The resulting algorithm has the same time and space complexity.

Related Works. In the non-probabilistic setting, the most efficient algorithms for deciding
simulation preorders have been proposed in [10, 23]. The complexity is O(mn) where n
and m denote the number of states and transitions of the transition system respectively.
For Markov chains, Derisavi et al. [17] presented an O(m log n) algorithm for strong bisim-
ulation. Weak bisimulation for DTMCs can be computed in O(n3) time [5]. For strong
simulation, Baier et al. [3] introduced a polynomial decision algorithm with complexity
O(n7/ log n), by tailoring a network flow algorithm [20] to the problem, embedded into an
iterative refinement loop. In [6], Baier et al. proved that weak simulation is decidable in
polynomial time by reducing it to linear programming (LP) problems. For a subclass of PAs
(reactive systems), Huynh and Tian [25] presented an O(m log n) algorithm for computing
strong bisimulation. Cattani and Segala [12] have presented decision algorithms for strong
and bisimulation for PAs. They reduced the decision problems to LP problems. To compute
the coarsest strong simulation for PAs, Baier et al. [3] presented an algorithm which reduces
the query whether a state strongly simulates another to a maximum flow problem. Their
algorithm has complexity O((mn6 + m2n3)/ log n)1. Recently, algorithm for computing
simulation and bisimulation metrics for concurrent games [13] has been studied.

1The m used in paper [3] is slightly different from the m as we use it. A detailed comparison is provided
later, in Remark 4.11 of Section 4.3.

DECIDING PROBABILISTIC SIMULATIONS 5

Outline of The Paper. The paper proceeds by recalling the definition of the models and
simulation relations in Section 2. In Section 3 we give a short interlude on maximum flow
problems. In Section 4 we present a combinatorial method to decide strong simulations.
In this section we also introduce new decision algorithms for deciding strong probabilistic
simulations for PAs and CPAs. In Section 5 we focus on algorithms for weak simulations.
Section 6 concludes the paper.

2. Preliminaries

In Subsection 2.1, we recall the definitions of fully probabilistic systems, discrete- and
continuous-time Markov chains [41], and the nondeterministic extensions of these discrete-
time [40] and continuous-time models [36, 7]. In Subsection 2.2 we recall the definition of
simulation relations.

2.1. Markov Models. Firstly, we introduce some general notations. Let X,Y be finite
sets. For f : X → R, let f(A) denote

∑

x∈A f(x) for all A ⊆ X. For f : X × Y → R, we let
f(x,A) denote

∑

y∈A f(x, y) for all x ∈ X and A ⊆ Y , and f(A, y) is defined similarly. Let
AP be a fixed, finite set of atomic propositions.

For a finite set S, a distribution µ over S is a function µ : S → [0, 1] satisfying the
condition µ(S) ≤ 1. The support of µ is defined by Supp(µ) = {s | µ(s) > 0}, and the
size of µ is defined by |µ| = |Supp(µ)|. The distribution µ is called stochastic if µ(S) = 1,
absorbing if µ(S) = 0. We sometimes use an auxiliary state (not a real state) ⊥ 6∈ S and
set µ(⊥) = 1 − µ(S). If µ is not stochastic we have µ(⊥) > 0. Further, let S⊥ denote the
set S ∪ {⊥}, and let Supp⊥(µ) = Supp(µ) ∪ {⊥} if µ(⊥) > 0 and Supp⊥(µ) = Supp(µ)
otherwise. We let Dist(S) denote the set of distributions over the set S.

Definition 2.1. A labelled fully probabilistic system (FPS) is a tupleM = (S,P, L) where
S is a finite set of states, P : S×S → [0, 1] is a probability matrix such that P(s, ·) ∈ Dist(S)
for all s ∈ S, and L : S → 2AP is a labelling function.

A state s is called stochastic and absorbing if the distribution P(s, ·) is stochastic
and absorbing respectively. For s ∈ S, let post(s) = Supp(P(s, ·)), and let post⊥(s) =
Supp⊥(P(s, ·)).

Definition 2.2. A labelled discrete-time Markov chain (DTMC) is an FPSM = (S,P, L)
where s is either absorbing or stochastic for all s ∈ S.

FPSs and DTMCs are time-abstract, since the duration between triggering transitions
is disregarded. We observe the state only at a discrete set of time points 0, 1, 2, We
recall the definition of CTMCs which are time-aware:

Definition 2.3. A labelled continuous-time Markov chain (CTMC) is a tupleM = (S,R, L)
with S and L as before, and R : S × S → R≥0 is a rate matrix.

For CTMC M, let post(s) = {s′ ∈ S | R(s, s′) > 0} for all s ∈ S. The rates give
the average delay of the corresponding transitions. Starting from state s, the probability
that within time t a successor state is chosen is given by 1 − e−R(s,S)t. The probability
that a specific successor state s′ is chosen within time t is thus given by (1 − e−R(s,S)t) ·
R(s, s′)/R(s, S). A CTMC induces an embedded DTMC, which captures the time-abstract
behaviour of it:

6 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

Definition 2.4. Let M = (S,R, L) be a CTMC. The embedded DTMC of M is defined
by emb(M) = (S,P, L) with P(s, s′) = R(s, s′)/R(s, S) if R(s, S) > 0 and 0 otherwise.

We will also use P for a CTMC directly, without referring to its embedded DTMC
explicitly. If one is interested in time-abstract properties (e. g., the probability to reach a
set of states) of a CTMC, it is sufficient to analyse its embedded DTMC.

For a given FPS, DTMC or CTMC, its fanout is defined by maxs∈S |post(s)|. The
number of states is defined by n = |S|, and the number of transitions is defined by m =
∑

s∈S |post(s)|. For s ∈ S, reach(s) denotes the set of states that are reachable from s
with positive probability. For a relation R ⊆ S × S and s ∈ S, let R(s) denote the set
{s′ ∈ S | (s, s′) ∈ R}. Similarly, for s′ ∈ S, let R−1(s′) denote the set {s ∈ S | (s, s′) ∈ R}.
If (s, s′) ∈ R, we write also s R s′.

Markov chains are purely probabilistic. Now we consider extensions of Markov chains
with nondeterminism. We first recall the definition of probabilistic automata, which can be
considered as the simple probabilistic automata with transitions allowing deadlocks in [39].

Definition 2.5. A probabilistic automaton (PA) is a tuple M = (S,Act,P, L) where S
and L are defined as before, Act is a finite set of actions, P ⊆ S ×Act×Dist(S) is a finite
set, called the probabilistic transition matrix.

For (s, α, µ) ∈ P, we use s
α
−→ µ as a shorthand notation, and call µ an α-successor distri-

bution of s. Let Act(s) = {α | ∃µ : s
α
−→ µ} denote the set of actions enabled at s. For s ∈ S

and α ∈ Act(s), let Stepsα(s) = {µ ∈ Dist(S) | s
α
−→ µ} and Steps(s) =

⋃

α∈Act(s) Stepsα(s).

The fanout of a state s is defined by fan(s) =
∑

α∈Act(s)

∑

µ∈Stepsα(s)(|µ|+ 1). Intuitively,

fan(s) denotes the total sum of the sizes of outgoing distributions of state s plus their
labelling. The fanout of M is defined by maxs∈S fan(s). Summing up over all states, we
define the size of the transitions by m =

∑

s∈S fan(s).
A Markov decision process (MDP) [36] arises from a PA M if for s ∈ S and α ∈ Act,

there is at most one α-successor distribution µ of s, which must be stochastic.
We consider a continuous-time counterpart of PAs where the transitions are described

by rates instead of probabilities. A rate function is simply a function r : S → R≥0. Let
|r| = |{s | r(s) > 0}| denote the size of r. Let Rate(S) denote the set of all rate functions.

Definition 2.6. A continuous-time PA (CPA) is a tuple (S,Act,R, L) where S, Act, L as
defined for PAs, and R ⊆ S ×Act× Rate(S) a finite set, called the rate matrix.

We write s
α
−→ r if (s, α, r) ∈ R, and call r an α-successor rate function of s. For

transition s
α
−→ r, the sum r(S) is also called the exit rate of it. Given that the transition

s
α
−→ r is chosen from state s, the probability that any successor state is chosen within time

t is given by 1− e−r(S)t, and a specific successor state s′ is chosen within time t is given by

(1− e−r(S)t) · r(s
′)

r(S) . The notion of Act(s), Stepsα(s), Steps(s), fanout and size of transitions

for PAs can be extended to CPAs by replacing occurrence of distribution µ by rate function
r in an obvious way.

The model continuous-time Markov decision processes (CTMDPs) [36, 7] can be con-
sidered as special CPAs where for s ∈ S and α ∈ Act, there exists at most one rate function

r ∈ Rate(S) such that s
α
−→ r. The model CTMDPs considered in paper [42] essentially

agree with our CPAs.

DECIDING PROBABILISTIC SIMULATIONS 7

s1

u1

1
2

v1

1
4

q1

1
8

s2

u2

1
2

v2

1
2

q2

1
8

q3

3
4

s3

u3

2
3

v3

1
3

q4

1
8

q5

7
8

Figure 1: An FPS for illustrating the simulation relations2.

2.2. Strong and Weak Simulation Relations. We first recall the notion of strong sim-
ulation on Markov chains [9], PAs [40], and CPAs [44]. Strong probabilistic simulation is
defined in Subsection 2.2.2. Weak simulation for Markov chains will be given in Subsec-
tion 2.2.3. The notion of simulation up to R is introduced in Subsection 2.2.4.

2.2.1. Strong Simulation. Strong simulation requires that each successor distribution of one
state has a corresponding successor distribution of the other state. The correspondence of
distributions is naturally defined with the concept of weight functions [26], adapted to FPSs
as in [9]. For a relation R ⊆ S × S, we let R⊥ denote the set R ∪ {(⊥, s) | s ∈ S⊥}.

Definition 2.7. Let µ, µ′ ∈ Dist(S) and R ⊆ S × S. A weight function for (µ, µ′) with
respect to R is a function ∆ : S⊥ × S⊥ → [0, 1] such that

(1) ∆(s, s′) > 0 implies s R⊥ s′,
(2) µ(s) = ∆(s, S⊥) for s ∈ S⊥ and
(3) µ′(s′) = ∆(S⊥, s′) for s′ ∈ S⊥.

We write µ ⊑R µ′ if there exists a weight function for (µ, µ′) with respect to R.

The first condition requires that only pairs (s, s′) in the relation R⊥ have a positive
weight. In other words, for s, s′ ∈ S with s′ 6∈ R⊥(s), it holds that ∆(s, s′) = 0. Strong sim-
ulation requires similar states to be related via weight functions on their distributions [26].

Definition 2.8. Let M = (S,P, L) be an FPS, and let R ⊆ S × S. The relation R is a
strong simulation onM iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and P(s1, ·) ⊑R P(s2, ·).

We say that s2 strongly simulates s1 in M, denoted by s1 -M s2, iff there exists a
strong simulation R on M such that s1 R s2.

By definition, it can be shown [9] that -M is reflexive and transitive, thus a preorder.
Moreover, -M is the coarsest strong simulation relation forM. If the modelM is clear from
the context, the subscriptM may be omitted. Assume that s1 - s2 and let ∆ denote the
corresponding weight function. If P(s2,⊥) > 0, we have that P(s2,⊥) =

∑

s∈S⊥
∆(s,⊥) =

∆(⊥,⊥). The second equality follows by the fact that ⊥ can not strongly simulate any real
state in S. Another observation is that if s is absorbing, then it can be strongly simulated
by any other state s′ with L(s) = L(s′).

2Although this graph is not connected, it shows a single FPS. Similarly, later figures will show a single
DTMC, CTMC etc.

8 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

Example 2.9. Consider the FPS depicted in Figure 1. Recall that labelling of states is
indicated by colours in the states. Since the yellow (grey) states are absorbing, they strongly
simulate each other. The same holds for the green (dark grey) states. We show now that
s1 - s2 but s2 6- s3.

Consider first the pair (s1, s2). Let R = {(s1, s2), (u1, u2), (v1, v2), (q1, q2)}. We show
that R is a strong simulation relation. First observe that L(s) = L(s′) for all (s, s′) ∈ R.
Since states u1, q1 are absorbing, the conditions for the pairs (u1, u2) and (q1, q2) hold
trivially. To show the conditions for (v1, v2), we consider the function ∆1 defined by:
∆1(q1, q2) = 1

8 , ∆1(⊥, q3) = 3
4 , ∆1(⊥,⊥) = 1

8 and ∆1(·) = 0 otherwise. It is easy to check
that ∆1 is a weight function for (P(v1, ·),P(v2, ·)) with respect to R. Now consider (s1, s2).
The weight function ∆2 for (P(s1, ·),P(s2, ·)) with respect to R is given by ∆2(u1, u2) = 1

2

and ∆2(v1, v2) = ∆2(⊥, v2) = 1
4 and ∆2(·) = 0 otherwise. Thus R is a strong simulation

which implies that s1 - s2.
Consider the pair (s2, s3). Since P(s2, v2) = 1

2 , to establish the Condition 2 of Defini-

tion 2.7, we should have 1
2 = ∆(v2, S⊥). Observe that v3 is the only successor state of s3

which can strongly simulate v2, thus ∆(v2, S⊥) = ∆(v2, v3). However, for state v3 we have
P(s3, v3) < ∆(v2, v3), which violates the Condition 3 of Definition 2.7, thus we cannot find
such a weight function. Hence, s2 6- s3.

Since each DTMC is a special case of an FPS, Definition 2.8 applies directly for DTMCs.
For CTMCs we say that s2 strongly simulates s1 if, in addition to the DTMC conditions,
s2 can move stochastically faster than s1 [9], which manifests itself by a higher rate.

Definition 2.10. Let M = (S,R, L) be a CTMC and let R ⊆ S × S. The relation R is a
strong simulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2), P(s1, ·) ⊑R P(s2, ·)
and R(s1, S) ≤ R(s2, S).

We say that s2 strongly simulates s1 in M, denoted by s1 -M s2, iff there exists a
strong simulation R on M such that s1 R s2.

Thus, s -M s′ holds if s -emb(M) s′, and s′ is faster than s. By definition, it can be
shown that -M is a preorder, and is the coarsest strong simulation relation for M. For
PAs, strong simulation requires that every α-successor distribution of s1 is related to an
α-successor distribution of s2 via a weight function [40, 26]:

Definition 2.11. Let M = (S,Act,P, L) be a PA and let R ⊆ S × S. The relation R is a

strong simulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and if s1
α
−→ µ1 then

there exists a transition s2
α
−→ µ2 with µ1 ⊑R µ2.

We say that s2 strongly simulates s1 inM, denoted s1 -M s2, iff there exists a strong
simulation R on M such that s1 R s2.

Example 2.12. Consider the PA in Figure 2. Then, it is easy to check s1 - s2: each
α-successor distribution of s1 has a corresponding α-successor distribution of s2. However,
s1 does not strongly simulate s2, as the middle α-successor distribution of s2 can not be
related by any α-successor distribution of s1.

Now we consider CPAs. For a rate function r, we let µ(r) ∈ Dist(S) denote the
induced distribution defined by: if r(S) > 0 then µ(r)(s) equals r(s)/r(S) for all s ∈ S, and
if r(S) = 0, then µ(r)(s) = 0 for all s ∈ S. Now we introduce the notion of strong simulation
for CPAs [44], which can be considered as an extension of the definition for CTMCs [9]:

DECIDING PROBABILISTIC SIMULATIONS 9

s1

u1 v1 u2 v2

.4

α

.6 .6 .4

α

s2

u3 v3 u4 v4 u5 v5

.4

α

.6 .5 .5

α

.6 .4

α

Figure 2: A PA for illustrating the simulation relations.

Definition 2.13. Let M = (S,Act,R, L) be a CPA and let R ⊆ S × S. The relation R is

a strong simulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and if s1
α
−→ r1 then

there exists a transition s2
α
−→ r2 with µ(r1) ⊑R µ(r2) and r1(S) ≤ r2(S).

We write s1 -M s2 iff there exists a strong simulation R on M such that s1 R s2.

Similar to CTMCs, the additional rate condition r1(S) ≤ r2(S) indicates that the

transition s2
α
−→ r2 is faster than s1

α
−→ r1. As a shorthand notation, we use r1 ⊑R r2 for the

condition µ(r1) ⊑R µ(r2) and r1(S) ≤ r2(S). For both PAs and CPAs, -M is the coarsest
strong simulation relation.

2.2.2. Strong Probabilistic Simulations. We recall the definition of strong probabilistic sim-
ulation, which is coarser than strong simulation, but still preserves the same class of PCTL-
properties as strong simulation does. We first recall the notion of combined transition [39],
a convex combination of several equally labelled transitions:

Definition 2.14. Let M = (S,Act,P, L) be a PA. Let s ∈ S, α ∈ Act(s) and k =
|Stepsα(s)|. Assume that Stepsα(s) = {µ1, . . . , µk}. The tuple (s, α, µ) is a combined

transition, denoted by s
α
; µ, iff there exist constants c1, . . . , ck ∈ [0, 1] with

∑k
i=1 ci = 1

such that µ =
∑k

i=1 ciµi.

The key difference to Definition 2.11 is the use of
α
; instead of

α
−→:

Definition 2.15. Let M = (S,Act,P, L) be a PA and let R ⊆ S × S. The relation R is
a strong probabilistic simulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and if

s1
α
−→ µ1 then there exists a combined transition s2

α
; µ2 with µ1 ⊑R µ2.

We write s1 -
p
M s2 iff there exists a strong probabilistic simulation R on M such that

s1 R s2.

Strong probabilistic simulation is insensitive to combined transitions3, thus, it is a
relaxation of strong simulation. Similar to strong simulation, -

p
M is the coarsest strong

probabilistic simulation relation for M. Since MDPs can be considered as special PAs,
we obtain the notions of strong simulation and strong probabilistic simulation for MDPs.
Moreover, these two relations coincide for MDPs as, by definition, for each state there is at
most one successor distribution per action.

3The combined transition defined in [39] is more general in two dimensions: First, successor distributions

are allowed to combine different actions. Second,
Pk

i=1
ci ≤ 1 is possible. The induced strong probabilistic

probabilistic simulation preorder is, however, the same.

10 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

s0

u0 v0

5

α

5

s1

u1 v1 u2 v2

2

α

8 12 6

α

s2

u3 v3 u4 v4

2

α

12 12 2

α

Figure 3: A Continuous-time Probabilistic Automaton.

Example 2.16. We consider again the PA depicted in Figure 2. From Example 2.12 we
know that s2 6- s1. In comparison to state s1, state s2 has one additional α-successor
distribution: to states u4 and v4 with equal probability 0.5. This successor distribution can
be considered as a combined transition of the two successor distributions of s1: each with
constant 0.5. Hence, we have s2 -p s1.

We extend the notion of strong probabilistic simulation for PAs to CPAs. First, we
introduce the notion of combined transitions for CPAs. In CPAs the probability that a
transition occurs is exponentially distributed. The combined transition should also be
exponentially distributed. The following example shows that a straightforward extension of
Definition 2.14 does not work.

Example 2.17. For this purpose we consider the CPA in Figure 3. Let r1 and r2 denote
left and the right α-successor rate functions out of state s1. Obviously, they have different
exit rates: r1(S) = 10, r2(S) = 18. Taking each with probability 0.5, we would get the
combined transition r = 0.5r1 + 0.5r2: r({u1, u2}) = 7 and r({v1, v2}) = 7. However,
r is hyper-exponentially distributed: the probability of reaching yellow (grey) states (u1

or u2) within time t under r is given by: 0.5 · 2
10 · (1 − e−10t) + 0.5 · 12

18 · (1 − e−18t).
Similarly, the probability of reaching green (dark grey) states within time t is given by:
0.5 · 8

10 · (1− e−10t) + 0.5 · 6
18 · (1− e−18t).

From state s2, the two α-successor rate functions have the same exit rate 14. Let r′1
and r′2 denote left and the right α-successor rate functions out of state s2. In this case the
combined transition r′ = 0.5r′1 + 0.5r′2 is also exponentially distributed with rate 14: the
probability to reach yellow (grey) states (u3 and u4) within time t is 7

14 · (1− e−14t), which
is the same as the probability of reaching green (dark grey) states within time t.

Based on the above example, it is easy to see that to get a combined transition which
is still exponentially distributed, we must consider rate functions with the same exit rate:

Definition 2.18. Let M = (S,Act,R, L) be a CPA. Let s ∈ S, α ∈ Act(s) and let
{r1, . . . , rk} ⊆ Stepsα(s) where ri(S) = rj(S) for i, j ∈ {1, . . . , k}. The tuple (s, α, r) is

a combined transition, denoted by s
α
; r, iff there exist constants c1, . . . , ck ∈ [0, 1] with

∑k
i=1 ci = 1 such that r =

∑k
i=1 ciri.

In the above definition, unlike for the PA case, only α-successor rate functions with
the same exit rate are combined together. Similar to PAs, strong probabilistic simulation
is insensitive to combined transitions, which is thus a relaxation of strong simulation:

Definition 2.19. Let M = (S,Act,R, L) be a CPA and let R ⊆ S × S. The relation R is
a strong probabilistic simulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and if

s1
α
−→ r1 then there exists a combined transition s2

α
; r2 with r1 ⊑R r2.

DECIDING PROBABILISTIC SIMULATIONS 11

Figure 4: Splitting of successor states for weak simulations.

We write s1 -
p
M s2 iff there exists a strong simulation R on M such that s1 R s2.

Recall r1 ⊑R r2 is a shorthand notation for µ(r1) ⊑R µ(r2) and r1(S) ≤ r2(S). By
definition, the defined strong probabilistic simulation -

p
M is the coarsest strong probabilistic

simulation relation forM.

Example 2.20. Reconsider the CPA in Figure 3. As discussed in Example 2.17, the two
α-successor rate functions of s1 cannot be combined together, thus the relation s0 -p s1

cannot be established. However, s0 -p s2 holds: denoting the left rate function of s2 as r1

and the right rate function as r2, we choose as the combined rate function r = 0.5r1 +0.5r2.
Obviously, the conditions in Definition 2.19 are satisfied.

2.2.3. Weak Simulations. We now recall the notion of weak simulation [9] on Markov
chains4. Intuitively, s2 weakly simulates s1 if they have the same labelling, and if their
successor states can be grouped into sets Ui and Vi for i = 1, 2, satisfying certain condi-
tions. Consider Figure 4. We can view steps to Vi as stutter steps while steps to Ui are
visible steps. With respect to the visible steps, it is then required that there exists a weight
function for the conditional distributions: P(s1, ·)/K1 and P(s2, ·)/K2 where Ki intuitively
is the probability to perform a visible step from si. The stutter steps must respect the
weak simulation relations: thus states in V2 should weakly simulate s1, and state s2 should
weakly simulate states in V1. This is depicted by dashed arrows in the figure. For reasons
we will explain later in Example 2.22, the definition needs to account for states which par-
tially belong to Ui and partially to Vi. Technically, this is achieved by functions δi that
distribute si over Ui and Vi in the definition below. For a given pair (s1, s2) and functions
δi : S → [0, 1], let Uδi

, Vδi
⊆ S (for i = 1, 2) denote the sets

Uδi
= {u ∈ post(si) | δi(u) > 0}, Vδi

= {v ∈ post (si) | δi(v) < 1} (2.1)

If (s1, s2) and δi are clear from the context, we write Ui, Vi instead.

Definition 2.21. Let M = (S,P, L) be a DTMC and let R ⊆ S × S. The relation R is a
weak simulation onM iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and there exist functions
δi : S → [0, 1] such that:

(1) (a) v1 R s2 for all v1 ∈ V1, and (b) s1 R v2 for all v2 ∈ V2

(2) there exists a function ∆ : S × S → [0, 1] such that:
(a) ∆(u1, u2) > 0 implies u1 ∈ U1, u2 ∈ U2 and u1 R u2.

4In [45], we have also considered decision algorithm for weak simulation for FPSs, which is defined in [9].
However, as indicated in [43], the proposed weak simulation for FPSs contains a subtle flaw, which cannot
be fixed in an obvious way. Thus, in this paper we restrict to weak simulation on DTMCs and CTMCs.

12 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

s1

u1

.3

v1

.2

s2

.5

v1

1

s3

u2

.15

v2

.1

s4

.75

v1

.5

s5

.5

v2

1

u1 v1 q1
1 u2 q2

1 v2 q3
1 q4

1

Figure 5: A DTMC where splitting states is necessary to establish the weak simulation. In
the model some states are drawn more than once.

(b) if K1 > 0 and K2 > 0 then for all states w ∈ S:

K1 ·∆(w,U2) = P(s1, w)δ1(w), K2 ·∆(U1, w) = P(s2, w)δ2(w)

where Ki =
∑

ui∈Ui
δi(ui) ·P(si, ui) for i = 1, 2.

(3) for u1 ∈ U1 there exists a path fragment s2, w1, . . . , wn, u2 with positive probability such
that n ≥ 0, s1 R wj for 0 < j ≤ n, and u1 R u2.

We say that s2 weakly simulates s1 in M, denoted s1 wM s2, iff there exists a weak
simulation R on M such that s1 R s2.

Note again that the sets Ui, Vi in the above definition are defined according to Equa-
tion 2.1 with respect to the pair (s1, s2) and the functions δi. The functions δi can be
considered as a generalisation of the characteristic function of Ui in the sense that we may
split the membership of a state to Ui and Vi into fragments which sum up to 1. For exam-
ple, if δ1(s) = 1

3 , we say that 1
3 fragment of the state s belongs to U1, and 2

3 fragment of s
belongs to V1. Hence, Ui and Vi are not necessarily disjoint. Observe that Ui = ∅ implies
that δi(s) = 0 for all s ∈ S. Similarly, Vi = ∅ implies that δi(s) = 1 for all s ∈ S.

Condition 3 will in the sequel be called the reachability condition. If K1 > 0 and
K2 = 0, which implies that U2 = ∅ and U1 6= ∅, the reachability condition guarantees that
for any visible step s1 → u1 with u1 ∈ U1, s2 can reach a state u2 which simulates u1 while
passing only through states simulating s1. Assume that we have S = {s1, s2, u1} where
L(s1) = L(s2) and u1 has a different labelling. There is only one transition P(s1, u1) = 1.
Obviously s1 6w s2. Dropping Condition 3 would mean that s1 w s2. We illustrate the use
of fragments of states in the following example:

Example 2.22. Consider the DTMC depicted in Figure 5. For states u1, u2, v1, v2, obvi-
ously the following pairs (u1, u2), (u1, v2), (v1, v2) are in the weak simulation relation. The
state u2 cannot weakly simulate v1. Since v2 weakly simulates v1, it holds that s2 w s5.
Similarly, from u1 w v1 we can easily show that s1 w s4. We observe also that s2 6w s3:
K1 > 0 and K2 > 0 since both s2 and s3 have yellow (grey) successor states, but the
required function ∆ cannot be established since u2 cannot weakly simulate any successor
state of s2 (which is v1). Thus s2 6w s3.

DECIDING PROBABILISTIC SIMULATIONS 13

Without considering fragments of states, we show that a weak simulation between s1

and s3 cannot be established. Since s2 6w s3, we must have U1 = {u1, v1, s2} and V1 = ∅.
The function δ1 is thus defined by δ1(u1) = δ1(v1) = δ(s2) = 1 which implies that K1 = 1.
Now consider the successor states of s3. Obviously δ2(u2) = δ2(v2) = 1, which implies that
u2, v2 ∈ U2. We consider the following two cases:

• The case δ2(s4) = 1. In this case we have that K2 = 1. A function ∆ must be defined
satisfying Condition 2b in Definition 2.21. Taking w = s4, the following must hold:
K2 · ∆(U1, s4) = P(s3, s4)δ2(s4). As K2 = 1,P(s3, s4) = 0.75 and δ2(s4) = 1, it follows
that ∆(U1, s4) = 0.75. The state s2 is the only successor of s1 that can be weakly
simulated by s4, so ∆(s2, s4) = 0.75 must hold. However, the equation K1 ·∆(s2, U2) =
P(s1, s2)δ1(s2) does not hold any more, as on the left side we have 0.75 but on the right
side we have 0.5 instead.
• The case δ2(s4) = 0. In this case we have still K2 > 0. Similar to the previous case it is

easy to see that the required function ∆ cannot be defined: the equation K1 ·∆(s2, U2) =
P(s1, s2)δ1(s2) does not hold since the left side is 0 (no states in U2 can weakly simulate
s2) but the right side equals 0.5.

Thus without splitting, s3 does not weakly simulate s1. We show it holds that s1 w s3. It is
sufficient to show that the relation R = {(s1, s3), (u1, u2), (v1, v2), (q1, q3), (s1, s4), (u1, v1),
(v1, v1), (q1, q1), (s2, s5), (s2, s4)} is a weak simulation relation. By the discussions above,
it is easy to verify that every pair except (s1, s3) satisfies the conditions in Definition 2.21.
We show now that the conditions hold also for the pair (s1, s3). The function δ1 with
δ1(u1) = δ1(v1) = δ1(s2) = 1 is defined as above, also the sets U1 = {u1, v1, s2}, V1 = ∅.
The function δ2 is defined by: δ2(u2) = δ2(v2) = 1 and δ2(s4) = 1

3 , which implies that
U2 = {u2, v2, s4} and V2 = {s4}. Thus, we have K1 = 1 and K2 = 0.5. Since s1 w s4,
Condition 1 holds trivially as (s1, s4) ∈ R. The reachability condition also holds trivially.
To show that Condition 2 holds, we define the function ∆ as follows: ∆(u1, u2) = 0.3,
∆(v1, v2) = 0.2 and ∆(s2, s4) = 0.5. We show that K2 · ∆(U1, w) = P(s3, w)δ2(w) holds
for all w ∈ S. It holds that K2 = 0.5. First observe that for w 6∈ U2 both sides of the
equation equal 0. Let first w = u2 for which we have that P(s3, u2)δ2(u2) = 0.15. Since
∆(U1, u2) = 0.3, also the left side equals 0.15. The case w = v2 can be shown in a similar
way. Now consider w = s4. Observe that ∆(U1, s4) = 0.5 thus the left side equals 0.25. The
right side equals P(s3, s4)δ2(s4) = 0.75 · 1

3 = 0.25 thus the equation holds. The equation
K1 · ∆(w,U2) = P(s1, w)δ1(w) can be shown in a similar way. Thus ∆ satisfies all the
conditions, which implies that s1 w s3.

Weak simulation for CTMCs is defined as follows.

Definition 2.23 ([9, 8]). LetM = (S,R, L) be a CTMC and let R ⊆ S × S. The relation
R is a weak simulation on M iff for s1 R s2: L(s1) = L(s2) and there exist functions
δi : S → [0, 1] (for i = 1, 2) satisfying Equation 2.1 and Conditions 1 and 2 of Definition 2.21
and the rate condition:

(3’) K1 ·R(s1, S) ≤ K2 ·R(s2, S)

We say that s2 weakly simulates s1 in M, denoted s1 wM s2, iff there exists a weak
simulation R on M such that s1 R s2.

In this definition, the rate condition 3′ strengthens the reachability condition of the
preceding definition. If U1 6= ∅, we have that K1 > 0; the rate condition then requires that

14 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

s1 w1
1

q1
1

s2 w2
1

q2
1

Figure 6: A simple FPS for illustrating the simulation up to R.

K2 > 0, which implies U2 6= ∅. For both DTMCs and CTMCs, the defined weak simulation
w is a preorder [9], and is the coarsest weak simulation relation forM.

2.2.4. Simulation up to R. For an arbitrary relation R on the state space S of an FPS with
s1 R s2, we say that s2 simulates s1 strongly up to R, denoted s1 -R s2, if L(s1) = L(s2)
and P(s1, ·) ⊑R P(s2, ·). Otherwise we write s1 6-R s2. Since only the first step is considered
for -R, s1 -R s2 does not imply s1 -M s2 unless R is a strong simulation. By definition,
R is a strong simulation if and only if for all s1 R s2 it holds that s1 -R s2. Likewise, we
say that s2 simulates s1 weakly up to R, denoted by s1 wR s2, if there are functions δi and
Ui, Vi,∆ as required by Definition 2.21 for this pair of states. Otherwise, we write s1 6wR s2.
Similar to strong simulation up to R, s1 wR s2 does not imply s1 wM s2, since no conditions
are imposed on pairs in R different from (s1, s2). Again, R is a weak simulation if and only
if for all s1 R s2 it holds that s1 wR s2. These conventions extend to DTMCs, CTMCs,
PAs and CPAs in an obvious way. For PAs and CPAs, strong probabilistic simulation up
to R, denoted by -

p
R, is also defined analogously.

Example 2.24. Consider the FPS in Figure 6. Let R = {(s1, s2), (w1, w2)}. Since L(q1) 6=
L(q2) we have that w1 6- w2. Thus, R is not a strong simulation. However, s1 -R s2, as
the weight function is given by ∆(w1, w2) = 1. Let R′ = {(s1, s2)}, then, s1 6-R′ s2.

3. Maximum Flow Problems

Before introducing algorithms to decide the simulation preorder, we briefly recall the preflow
algorithm [20] for finding the maximum flow over the network N = (V,E, c) where V is a
finite set of vertices, E ⊆ V × V is a set of edges, and c : E → R>0 ∪ {∞} is the capacity
function. V contains a distinguished source vertex 1 and a distinguished sink vertex %. We
extend the capacity function to all vertex pairs: c(v,w) = 0 if (v,w) 6∈ E. A flow f on N
is a function f : V × V → R that satisfies:

(1) f(v,w) ≤ c(v,w) for all (v,w) ∈ V × V capacity constraints

(2) f(v,w) = −f(w, v) for all (v,w) ∈ V × V antisymmetry constraint

(3) f(V, v) = 0 at vertices v ∈ V \ {1,%} conservation rule

The value of a flow function f is given by f(1, V). A maximum flow is a flow of maximum
value. A preflow is a function f : V × V → R satisfying Conditions 1 and 2 above, and the
relaxation of Condition 3:

(3′) f(V, v) ≥ 0 for all v ∈ V \ {1}.

The excess e(v) of a vertex v is defined by f(V, v). A vertex v 6∈ {1,%} is called active if
e(v) > 0. Observe that if in a preflow function no vertex v is active for v ∈ V \ {1,%}, it
is then also a flow function. A pair (v,w) is a residual edge of f if f(v,w) < c(v,w). The
set of residual edges with respect to f is denoted by Ef . The residual capacity cf (v,w) of
the residual edge (v,w) is defined by c(v,w) − f(v,w). If (v,w) is not a residual edge, it
is called saturated. A valid distance function (called valid labelling in [20]) d is a function

DECIDING PROBABILISTIC SIMULATIONS 15

V → N ∪ {∞} satisfying: d(1) = |V |, d(%) = 0 and d(v) ≤ d(w) + 1 for every residual edge
(v,w). A residual edge (v,w) is admissible if d(v) = d(w) + 1.

Related to maximum flows are minimum cuts. A cut of a network N = (V,E, c) is a
partition of V into two disjoint sets (X,X ′) such that 1 ∈ X and % ∈ X ′. The capacity of
(X,X ′) is the sum of all capacities of edges from X to X ′, i. e.,

∑

v∈X,w∈X′ c(v,w). A min-

imum cut is a cut with minimal capacity. The Maximum Flow Minimum Cut Theorem [1]
states that the capacity of a minimum cut is equal to the value of a maximum flow.

The Preflow Algorithm. We initialise the preflow f by: f(v,w) = c(v,w) if v = 1 and 0
otherwise. The distance function d is initialised by: d(v) = |V | if v = 1 and 0 otherwise.
The preflow algorithm preserves the validity of the preflow f and the distance function
d. If there is an active vertex v such that the residual edge (v,w) is admissible, we push

δ := min{e(v), cf (v,w)} amount of flow from v toward the sink along the admissible edge
(v,w) by increasing f(v,w) (and decreasing f(w, v)) by δ. The excesses of v and w are then
modified accordingly by: e(v) = e(v)−δ and e(w) = e(w)+δ. If v is active but there are no
admissible edges leaving it, one may relabel v by letting d(v) := min{d(w)+1 | (v,w) ∈ Ef}.
Pushing and relabelling are repeated until there are no active vertices left. The algorithm
terminates if no such operations apply. The resulting final preflow f is a maximum flow.

Feasible Flow Problem. Let A ⊆ E be a subset of edges of the network N = (V,E, c), and
define the lower bound function l : A → R>0 which satisfies l(e) ≤ c(e) for all e ∈ A. We
address the feasible flow problem which consists of finding a flow function f satisfying the
condition: f(e) ≥ l(e) for all e ∈ A. We briefly show that this problem can be reduced to
the maximum flow problem [1].

We can replace a minimum flow requirement on edge v → w by turning v into a
demanding vertex (i. e., a vertex that consumes part of its inflow) and turning w into a
supplying vertex (i. e., a vertex that creates some outflow ex nihilo). The capacity of edge
v → w is then reduced accordingly.

Now, we are going to look for a flow-like function for the updated network. The function
should satisfy the capacity constraints, and the difference between outflow and inflow in
each vertex corresponds to its supply or demand, except for 1 and %. To remove that last
exception, we add an edge from % to 1 with capacity ∞.

We then apply another transformation to the updated network so that we can apply
the maximum flow algorithm. We add new source and target vertices 1′ and %′. For each
supplying vertex s, we add an edge 1′ → s with the same capacity as the supply of the
vertex. For each demanding vertex d, we add an edge d → %′ with the same capacity as
the demand of the vertex. In [1] it is shown that the original network has a feasible flow if
and only if the transformed network has a flow h that saturates all edges from 1′ and all
edges to %′. The flow h necessarily is a maximum flow, and if there is an h, each maximum
flow satisfies the requirement; therefore it can be found by the maximum flow algorithm.
An example will be given in Example 5.4 in Section 5.

4. Algorithms for Deciding Strong Simulations

We first recall the basic algorithm to compute the largest strong simulation relation - in
Subsection 4.1. Then, we refine this algorithm to deal with strong simulation on Markov
chains in Subsection 4.2, and extend it to deal with probabilistic automata in Subsection 4.3.

16 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

SimRels(M)

1.1: R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2)} and i← 0
1.2: repeat

1.3: i← i + 1
1.4: Ri+1 ← ∅
1.5: for all (s1, s2) ∈ Ri do

1.6: if s1 -Ri
s2 then

1.7: Ri+1 ← Ri+1 ∪ {(s1, s2)}
1.8: until Ri+1 = Ri

1.9: return Ri

Algorithm 1: Basic algorithm to decide strong simulation.

In Subsection 4.4 we present an algorithm for deciding strong probabilistic simulation for
probabilistic automata.

4.1. Basic Algorithm to Decide Strong Simulation. The algorithm in [3], copied as
SimRels in Algorithm 1, takes as a parameter a model, which, for now, is an FPSM. The
subscript ‘s’ stands for strong simulation; a very similar algorithm, namely SimRelw, will
be used for weak simulation later. To calculate the strong simulation relation for M, the
algorithm starts with the initial relation R1 = {(s1, s2) ∈ S × S | L(s1) = L(s2)} which is
coarser than -M. In iteration i, it generates Ri+1 from Ri by deleting each pair (s1, s2)
from Ri if s2 cannot strongly simulate s1 up to Ri, i. e., s1 6-Ri

s2. This proceeds until
there is no such pair left, i. e., Ri+1 = Ri. Invariantly throughout the loop it holds that
Ri is coarser than -M (i. e., -M is a sub-relation of Ri). We obtain the strong simulation
preorder -M = Ri, once the algorithm terminates.

The decisive part of the algorithm is the check in Line 1.6, i. e., whether s1 -Ri
s2. This

can be answered via solving a maximum flow problem on a particular network N (P(s1, ·),
P(s2, ·), Ri) constructed from P(s1, ·), P(s2, ·) and Ri. This network is the relevant part of
a graph containing two copies t ∈ S⊥ and t ∈ S⊥ of each state where S⊥ = {t | t ∈ S⊥}
as follows: Let 1 (the source) and % (the sink) be two additional vertices not contained in
S⊥∪S⊥. For µ, µ′ ∈ Dist(S), and a relation R ⊆ S×S we define the network N (µ, µ′, R) =

(V,E, c) with the set of vertices V = {1,%} ∪ Supp⊥(µ) ∪ Supp⊥(µ′) and the set of edges
E is defined by E = {(s, t) | (s, t) ∈R⊥} ∪ {(1, s)} ∪ {(t,%)} where s ∈ Supp⊥(µ) and
t ∈ Supp⊥(µ′). Recall the relation R⊥ is defined by R ∪ {(⊥, s) | s ∈ S⊥}. The capacity
function c is defined as follows: c(1, s) = µ(s) for all s ∈ Supp⊥(µ), c(t,%) = µ′(t) for
all t ∈ Supp⊥(µ′), and c(s, t) = ∞ for all other (s, t) ∈ E. This network is a bipartite
network, since the vertices can be partitioned into two subsets V1 := Supp⊥(µ) ∪ {%}

and V2 := Supp⊥(µ′) ∪ {1} such that all edges have one endpoint in V1 and another in
V2. Later, we will use two variations of this network: For γ ∈ R>0, we let N (µ, γµ′, R)
denote the network obtained from N (µ, µ′, R) by setting the capacities to the sink % to:
c(t,%) = γµ′(t). For two states s1, s2 of an FPS or a CTMC, we let N (s1, s2, R) denote the
network N (P(s1, ·),P(s2, ·), R).

The following lemma expresses the crucial relationship between maximum flows and
weight functions on which the algorithm is based. It is a direct extension of [3, Lemma 5.1]:

DECIDING PROBABILISTIC SIMULATIONS 17

Lemma 4.1. Let S be a finite set of states and R be a relation on S. Let µ, µ′ ∈ Dist(S).
Then, µ ⊑R µ′ iff the maximum flow of the network N (µ, µ′, R) has value 1.

Proof. As we introduced the auxiliary state ⊥, µ and µ′ are stochastic distributions in
Dist(S⊥). The rest of the proof follows directly from [3, Lemma 5.1].

Thus we can decide s1 -Ri
s2 by computing the maximum flow in N (s1, s2, Ri) and

then check whether it has value 1. We recall the correctness and complexity of SimRels

which will also be used later.

Theorem 4.2 ([3]). If SimRels(M) terminates, the returned relation equals -M. More-

over, SimRels(M) runs in time O(n7/ log n) and in space O(n2).

Proof. First we show that after the last iteration (say iteration k), it holds that - is coarser
than Rk: It holds that Rk+1 = Rk, thus for all (s1, s2) ∈ Rk, we have that s1 -Rk

s2. As
for all (s1, s2) ∈ Rk ⊆ R1, we have L(s1) = L(s2), Rk is a strong simulation relation by
Definition 2.8, thus - is coarser than Rk.

Now we show by induction that the loop of the algorithm invariantly ensures that Ri

is coarser than -. Assume i = 1. By definition of strong simulation, s1 - s2 implies
L(s1) = L(s2). Thus, the initial relation R1 is coarser than the simulation relation -. Now
assume that Ri is coarser than - for some 1 ≤ i < k; we will show that also Ri+1 is coarser
than -. Pick a pair (s1, s2) ∈ - arbitrarily. By Definition 2.8, P(s1, ·) ⊑- P(s2, ·), so there
exists a weight function for (P(s1, ·),P(s2, ·)) with respect to -. Inspection of Definition 2.7
shows that the same function is also a weight function with respect to any set coarser than
-. As Ri is coarser than - by induction hypothesis, we conclude that P(s1, ·) ⊑Ri

P(s2, ·),
and from Subsection 2.2.4, s1 -Ri

s2. This implies that (s1, s2) ∈ Ri+1 by line 1.6 for all
s1 - s2. Therefore, Ri+1 is coarser than - for all i = 1 . . . , k.

Now we show the complexity. For one network N (s1, s2, Ri) = (V,E, c), the sizes of
the vertices |V | and edges |E| are bounded by 2n + 4 and (n + 1)2 + 2n, respectively. The
number of edges meets the worst case bound O(n2). To the best of our knowledge, the best

complexity of the flow computation for the network G is O(|V |3 / log |V |) = O(n3/ log n) [14,
19]. In the algorithm SimRels, only one pair, in the worst case, is removed from Ri in
iteration i, which indicates that the test whether s1 -Ri

s2 is called |R1| times, |R1| − 1

times and so on. Altogether it is bounded by
∑|R1|

i=1 i ≤
∑n2

i=1 i ∈ O(n4). Hence, the overall
time complexity amounts to O(n7/ log n). The space complexity is O(n2) because of the
representation of the transitions in N (s1, s2, Ri).

4.2. An Improved Algorithm for FPSs. We first analyse the behaviour of SimRels

in more detail. For this, we consider an arbitrary pair (s1, s2), and assume that (s1, s2)
stays in relation R1, . . . , Rk throughout the iterations i = 1, . . . , k, until the pair is either
found not to satisfy s1 -Rk

s2 or the algorithm terminates with a fix-point after iteration
k. Then altogether the maximum flow algorithms are run k-times for this pair. However,
the networks N (s1, s2, Ri) constructed in successive iterations are very similar, and may
often be identical across iterations: They differ from iteration to iteration only by deletion
of some edges induced by the successive cleanup of Ri. For our particular pair (s1, s2) the
network might not change at all in some iterations, because the deletions from Ri do not
affect their direct successors. We are going to exploit this observation by an algorithm that
reuses the already computed maximum flow, in a way that whatever happens is good: If no

18 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

Smf(i,N (s1, s2, Ri−1), fi−1, di−1,Di−1)

2.1: N (s1, s2, Ri)← N (s1, s2, Ri−1 \Di−1) and fi ← fi−1 and di ← di−1

2.2: for all (u1, u2) ∈ Di−1 do

2.3: fi(u2,%)← fi(u2,%)− fi(u1, u2)
2.4: fi(u1, u2)← 0
2.5: Apply the preflow algorithm to calculate the maximum flow for N (s1, s2, Ri),

but initialise the preflow to fi and the distance function to di.
2.6: return (|fi| = 1,N (s1, s2, Ri), fi, di)

Smfinit(i, s1, s2, Ri)

2.11: Initialise the network N (s1, s2, Ri).
2.12: Apply the preflow algorithm to calculate the maximum flow for N (s1, s2, Ri).
2.13: return (|fi| = 1,N (s1, s2, Ri), fi, di)

Algorithm 2: Algorithm for a sequence of maximum flows.

changes occur from N (s1, s2, Ri−1) to N (s1, s2, Ri), then the maximum flow is the same as
the one in the previous iteration. If changes do occur, the preflow algorithm can be applied
to get the new maximum flow very fast, using the maximum flow and distance function
constructed in the previous iteration as a starting point.

To understand the algorithm, we look at the network N (s1, s2, R1). Let D1, . . . ,Dk

be pairwise disjoint subsets of R1, which correspond to the pairs deleted from R1 in it-

eration i, so Ri+1 = Ri \ Di for 1 ≤ i ≤ k. Let f
(s1,s2)
i denote the maximum flow of

the network N (s1, s2, Ri) for 1 ≤ i ≤ k. We sometimes omit the superscript (s1, s2)
in the parameters if the pair (s1, s2) is clear from the context. We address the prob-
lem of checking |fi| = 1 for all i = 1, . . . , k. Our algorithm sequence of maximum flows

Smf(i,N (s1, s2, Ri−1), fi−1, di−1,Di−1) is shown as Algorithm 2. It executes iteration i of
a parametric flow algorithm, where N (s1, s2, Ri−1) is the network for (s1, s2) and fi−1 and
di−1 are the flow and the distance function resulting from the previous iteration i− 1; and
Di−1 is a set of edges that have to be deleted from N (s1, s2, Ri−1) to get the current net-
work. The algorithm returns a tuple, in which the first component is a boolean that tells
whether |fi| = 1; it also returns the new network N (s1, s2, Ri), flow fi and distance function
di to be reused in the next iteration. Smf is inspired by the parametric maximum algorithm

in [18]. A variant of Smf is used in the first iteration, shown in lines 2.11–2.13.
This algorithm for sequence of maximum flow problems is called in an improved version

of SimRels shown as Algorithm 3. Lines 3.2–3.7 contain the first iteration, very similar to
the first iteration of Algorithm 1 (lines 1.4–1.7). At line 3.4 we prepare for later iterations
the set

Listener (s1,s2) = {(u1, u2) | u1 ∈ pre(s1) ∧ u2 ∈ pre(s2) ∧ L(u1) = L(u2)} ,

where pre(s) = {t ∈ S | P(t, s) > 0}. This set contains all pairs (u1, u2) such that
the network N (u1, u2, R1) contains the edge (s1, s2). Iteration i (for i > 1) of the loop
(lines 3.10–3.18) calculates Ri+1 from Ri. In lines 3.11–3.14, we collect edges that should

be removed from N (u1, u2, Ri−1) in the sets D
(u1,u2)
i−1 . At line 3.16, the algorithm Smf

constructs the maximum flow for parameters using information from iteration i− 1. It uses

the set D
(s1,s2)
i−1 to update the network N (s1, s2, Ri−1), flow fi−1, a distance function di−1;

DECIDING PROBABILISTIC SIMULATIONS 19

SimRel
FPS
s (M)

3.1: R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2)} and i← 1
3.2: R2 ← ∅
3.3: for all (s1, s2) ∈ R1 do

3.4: Listener (s1,s2) ← {(u1, u2) | u1 ∈ pre(s1) ∧ u2 ∈ pre(s2) ∧ L(u1) = L(u2)}

3.5: (match ,N (s1, s2, R1), f
(s1,s2)
1 , d

(s1,s2)
1)← Smfinit(1, s1, s2, R1)

3.6: if match then

3.7: R2 ← R2 ∪ {(s1, s2)}
3.8: while Ri+1 6= Ri do

3.9: i← i + 1
3.10: Ri+1 ← ∅ and Di−1 ← Ri−1 \Ri

3.11: for all (s1, s2) ∈ Ri do

3.12: D
(s1,s2)
i−1 ← ∅

3.13: for all (s1, s2) ∈ Di−1, (u1, u2) ∈ Listener (s1,s2) ∩Ri−1 do

3.14: D
(u1,u2)
i−1 ← D

(u1,u2)
i−1 ∪ {(s1, s2)}

3.15: for all (s1, s2) ∈ Ri do

3.16: (match ,N (s1, s2, Ri), f
(s1,s2)
i , d

(s1,s2)
i)

← Smf(i,N (s1, s2, Ri−1), f
(s1,s2)
i−1 , d

(s1,s2)
i−1 ,D

(s1,s2)
i−1)

3.17: if match then

3.18: Ri+1 ← Ri+1 ∪ {(s1, s2)}
3.19: return Ri

Algorithm 3: Improved algorithm for deciding strong simulation for FPSs.

then it constructs the maximum flow fi for the network N (s1, s2, Ri). If Smf returns true,
(s1, s2) is inserted into Ri+1 and survives this iteration (line 3.18).

Consider the algorithm Smf and assume that i > 1. At lines 2.1–2.4, we remove the
edges Di−1 from the network N (s1, s2, Ri−1) and generate the preflow fi based on the flow
fi−1, which is the maximum flow of the network N (s1, s2, Ri−1), by

• setting fi(u1, u2) = 0 for all deleted edges (u1, u2) ∈ Di−1, and
• reducing fi(u2,%) such that the preflow fi becomes consistent with the (relaxed) flow

conservation rule.

The excess e(v) is increased if there exists (v,w) ∈ Di−1 such that fi−1(v,w) > 0, and
unchanged otherwise. Hence, fi after line 2.4 is a preflow. The distance function di−1 = di

is still valid for this preflow, since removing the set of edges Di−1 does not introduce new
residual edges. This guarantees that, at line 2.5, the preflow algorithm finds a maximum
flow over the network N (s1, s2, Ri). In line 2.6, Smf returns whether the flow has value 1
together with information to be reused in the next iteration. (If |fk| < 1 at some iteration k,
then |fj| < 1 for all iterations j ≥ k because deleting edges does not increase the maximum
flow. In that case, it would be sufficient to return false.) We prove the correctness and
complexity of the algorithm Smf:

Lemma 4.3. Let (s1, s2) ∈ R1. Then, Smfinit returns true iff s1 -R1
s2. For some i > 1,

let N (s1, s2, Ri−1), fi−1, and di−1 be as returned by some earlier call to Smf or Smfinit .

Let Di−1 = (Ri−1 \Ri) ∩ (post (s1)× post(s2)) be the set of edges that will be removed from

20 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

the network N (s1, s2, Ri−1) during the (i−1)th call of Smf. Then, the (i−1)th call of Smf

returns true iff s1 -Ri
s2.

Proof. By Lemma 4.1, Smfinit returns true iff |f1| = 1, which is equivalent to s1 -R1
s2. Let

i > 1. As discussed, at the beginning of line 2.5, the function fi−1 is a flow (thus a preflow)
with value 1, and the distance function di−1 is a valid distance function. It follows directly
from the correctness of the preflow algorithm [2] that after line 2.5, fi is a maximum flow
for N (s1, s2, Ri). Thus, Smf returns true (i.e. |fi| = 1) which is equivalent to s1 -Ri

s2.

Lemma 4.4. Consider the pair (s1, s2) and assume that |post (s1)| ≤ |post (s2)|. All calls

to Smf(i,N (s1, s2, ·), · · ·) related to (s1, s2) together run in time O(|post(s1)| |post (s2)|
2).

Proof. In the bipartite network N (s1, s2, R1), the set of vertices are partitioned into subsets
V1 = post(s1)∪{%} and V2 = post(s2)∪{1} as described in Section 4.1. Generating the initial
network (line 2.11) takes time in O(|V1| |V2|). In our sequence of maximum flow problems,
the number of (nontrivial) iterations, denoted by k, is bounded by the number of edges, i. e.,
k ≤ |E| ≤ |V1| |V2| − 1. We split the work being done by all calls to Smf(i,N (s1, s2, ·), . . .)
together with the initial call to the preflow algorithm (line 2.12 and line 2.5) into edge
deletions, relabels, non-saturating pushes, saturating pushes. (A non-saturating push along
an edge (u, v) moves all excess at u to v; by such a push, the number of active nodes never
increases.)

All edge deletions take time proportional to
∑k

i=1 |Di|, which is less than the number
of edges in the network. Therefore, edge deletions take time O(|V1||V2|). For all v ∈ V , it
holds that di+1(v) = di(v), i.e., the labelling function at the beginning of iteration i + 1 is
the same as the labelling function at the end of iteration i.

We discuss the time for relabelling and saturating pushes [2]. For a bipartite network,
the distance of the source can be initialised to d(1) = 2 |V1| instead of |V |, and d(v) never
grows above 4 |V1| for all v ∈ V . For v ∈ V , let I(v) denote the set of nodes containing w such
that either (v,w) ∈ E or (w, v) ∈ E. Intuitively, it represents edges which could be admis-
sible leaving v. The time for relabel operations with respect to node v is thus (4 |V1|)|I(v)|.
Altogether, this gives the time for all relabel operations:

∑

v∈V ((4 |V1|)|I(v)|) ∈ O(|V1| |E|).
Between two consecutive saturating pushes on (v,w), the distances d(v) and d(w) must in-
crease by 2. Thus, the number of saturating pushes on edge (v,w) is bounded by 4 |V1|.
Summing over all edges, the work for saturating pushes is bounded by O(|V1| |E|).

Now we discuss the analysis of the number of non-saturating pushes, which is very
similar to the proof of Theorem 2.2 in [22] where Max-d version of the algorithm is used.
Assume that in iteration l ≤ k of Smf, the last relabelling action occurs. In the Max-d
version [22], always the active node with the highest label is selected, and once an active
node is selected, the excess of this node is pushed until it becomes 0. This implies that,
between any two relabel operations, there are at most n active nodes processed (otherwise
the algorithm terminates and we get the maximum flow). Also observe that at each time
an active node is selected, at most one non-saturating push can occur, which implies that
there are at most n non-saturating pushes between node label increases. Since di(v) is
bounded by 4|V1|, the number of relabels altogether is bounded by O(|V1||V |). Thus, the
number of non-saturating pushes before the iteration l is bounded by O(|V1||V |

2). Since
the distance function does not change after iteration l any more, inside any of the iterations
l′ ≥ l, there are again at most n − 1 non-saturating pushes. Hence, the number of non-
saturating pushes is bounded by |V1||V |

2 + (k + 1 − l)(|V | − 1) ∈ O(|V1||V |
2 + k|V |).

DECIDING PROBABILISTIC SIMULATIONS 21

Since k ≤ |V1||V2| − 1, and |V | ≤ 2|V2|, thus, the overall time complexity amounts to

O(|V1||V2|
2) = O(|post(s1)| |post (s2)|

2) as required.

Now we give the correctness and complexity of the algorithm SimRel for FPSs:

Theorem 4.5. If SimRel
FPS
s (M) terminates, the returned relation equals -M.

Proof. By Lemma 4.3, Smfinit(i, s1, s2, R1) returns true in iteration i = 1 iff s1 -R1
s2;

Smf(i,N (s1, s2, Ri−1), . . .) returns true in iteration i > 1 iff s1 -Ri
s2. The rest of the

correctness proof is the same as the proof of Theorem 4.2.

Theorem 4.6. The algorithm SimRel
FPS
s (M) runs in time O(m2n) and in space O(m2).

If the fanout is bounded by a constant, it has complexity O(n2), both in time and space.

Proof. We first show the space complexity. In most cases, it is enough to store information
from the previous iteration until the corresponding structure for the current iteration is
calculated. The size of the set Listener (s1,s2) is bounded by |pre(s1)| |pre(s2)| where pre(s) =
{t ∈ S | P(t, s) > 0}. Summing over all (s1, s2), we get

∑

s1∈S

∑

s2∈S |pre(s1)| |pre(s2)| =

m2. Assume we run iteration i. For every pair (s1, s2), we generate the set D
(s1,s2)
i−1 and the

network N (s1, s2, Ri) together with fi and di. Obviously, the size of D
(s1,s2)
i−1 is bounded by

|post (s1)| |post(s2)|. Summing over all (s1, s2), we get the bound O(m2). The number of
edges of the network N (s1, s2, R1) (together with fi and di) is in O(|post (s1)| |post(s2)|).
Summing over all (s1, s2) yields a memory consumption in O(m2) again. Hence, the overall
space complexity is O(m2).

Now we show the time complexity. We observe that a pair (s1, s2) belongs to Di in at
most one iteration. Therefore, the time needed in lines 3.11–3.14 in all iterations together is
bounded by the size of all sets Listener (s1,s2), which is O(m2). We analyse the time needed
for all calls to the algorithm Smf. Recall that the fanout g equals maxs∈S |post (s)|, and
therefore |post(si)| ≤ g for i = 1, 2. By Lemma 4.4, the complexity attributed to the pair
(s1, s2) is bounded by O(g |post(s1)| |post(s2)|). Taking the sum over all possible pairs, we
get the bound gm2 ∈ O(m2n). If g is bounded by a constant, we have m ≤ gn, and the
time complexity is gm2 ≤ g3n2 ∈ O(n2). In this case the space complexity is also O(n2).

Strong Simulation for Markov Chains. We now consider DTMCs and CTMCs. Since each
DTMC is a special case of an FPS the algorithm SimRel

FPS
s applies directly.

Let M = (S,R, L) be a CTMC. Recall that s -M s′ holds if s -emb(M) s′ in the

embedded DTMC, and s′ is faster than s. We can ensure the additional rate condition by
incorporating it into the initial relation R. More precisely, initially R contains only those
pair (s, s′) such that L(s) = L(s′), and that the state s′ is faster than s, i. e., we replace
line 3.1 of the algorithm by

R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2) ∧R(s1, S) ≤ R(s2, S)}

to ensure the additional rate condition of Definition 2.10. In the refinement steps afterwards,
only the weight function conditions need to be checked with respect to the current relation
in the embedded DTMC. Thus, we arrive at an algorithm for CTMCs with the same time
and space complexity as for FPSs.

Example 4.7. Consider the CTMC in the left part of Figure 7 (it has 10 states). Consider
the pair (s1, s2) ∈ R1. The network N (s1, s2, R1) is depicted on the right of the figure.

22 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

s1

u1

1

u2

1

q1

2

s2

u3

2

q2

3

u4

2

q3

2

x1

3 u1

u2

u3

u4

1 %

1
2

1
2

1
2

1
2

Figure 7: A CTMC example and its network N (s1, s2, R1).

Assume that we get the maximum flow f1 which sends 1
2 amount of flow along the path

1, u2, u4,% and 1
2 amount of flow along 1, u1, u3,%. Hence, the check for (s1, s2) is successful

in the first iteration. The checks for the pairs (u1, u3), (u1, u4) and (u2, u3) are also successful
in the first iteration. However, the check for the pair (u2, u4) fails, as the probability to go
from u4 to q3 in the embedded DTMC is 2

5 , while the probability to go from u2 to q1 in the
embedded DTMC is 1.

In the second iteration, the network N (s1, s2, R2) is obtained from N (s1, s2, R1) by
deleting the edge (u2, u4). In N (s1, s2, R2), the flows on (u2, u4) and on (u4,%) are set to
0, and the vertex u2 has a positive excess 1

2 . Applying the preflow algorithm, we push the
excess from u2, along u3, u1, u4 to %. We get a maximum flow f2 for N (s1, s2, R2) which
sends 1

2 amount of flow along the path 1, u2, u3,% and 1
2 amount of flow along 1, u1, u4,%.

Hence, the check for (s1, s2) is also successful in the second iteration. Once the fix-point is
reached, R still contains (s1, s2).

4.3. Strong Simulation for Probabilistic Automata. In this subsection we present
algorithms for deciding strong simulations for PAs and CPAs. It takes the skeleton of the
algorithm for FPSs: it starts with a relation R which is coarser than -, and then refines R
until - is achieved. In the refinement loop, a pair (s, s′) is eliminated from the relation R
if the corresponding strong simulation conditions are violated with respect to the current
relation. For PAs, this means that there exists an α-successor distribution µ of s, such that
for all α-successor distribution µ′ of s′, we cannot find a weight function for (µ, µ′) with
respect to the current relation R.

LetM = (S,Act,P, L) be a PA. We aim to extend Algorithm 3 to determine the strong
simulation on PAs. For a pair (s1, s2), assume that L(s1) = L(s2) and that Act(s1) ⊆
Act(s2), which is guaranteed by the initialisation. We consider line 3.17, which checks the
condition P(s1, ·) ⊑Ri

P(s2, ·) using Smf. By Definition 2.11 of strong simulation for PAs,
we should instead check the condition

∀α ∈ Act . ∀s1
α
−→ µ1. ∃s2

α
−→ µ2 with µ1 ⊑Ri

µ2 (4.1)

Recall the condition µ1 ⊑Ri
µ2 is true iff the maximum flow of the network N (µ1, µ2, Ri) has

value one. Sometimes, we write N (s1, α, µ1, s2, µ2, Ri) to denote the network N (µ1, µ2, Ri)
associated with the pair (s1, s2) with respect to action α.

Our first goal is to extend Smf to check Condition 4.1 for a fixed action α and α-
successor distribution µ1 of s1. To this end, we introduce a list Sim(s1,α,µ1,s2) that contains
all potential candidates of α-successor distributions of s2 which could be used to establish

DECIDING PROBABILISTIC SIMULATIONS 23

ActSmf(i, Simi−1,N (µ1, µ2, Ri−1), fi−1, di−1,Di−1)

4.1: Simi ← Simi−1

4.2: (match ,N (µ1, µ2, Ri), fi, di)← Smf(i,N (µ1, µ2, Ri−1), fi−1, di−1,Di−1)
4.3: if match then

4.4: return (true, Simi,N (µ1, µ2, Ri), fi, di)
4.5: Simi ← tail(Simi)
4.6: while ¬empty(Simi) do

4.7: µ2 ← head(Simi)
4.8: (match ,N (µ1, µ2, Ri), fi, di)← Smfinit(i, µ1, µ2, Ri)
4.9: if match then

4.10: return (true, Simi,N (µ1, µ2, Ri), fi, di)
4.11: Simi ← tail(Simi)
4.12: return (false, ∅,NIL,NIL,NIL)

ActSmfinit(i, µ1, Simi, Ri)

goto line 4.6

Algorithm 4: Subroutine to calculate whether s1 -Ri
s2, as far as s1

α
−→ µ1 is concerned. The

parameter Sim denotes the subsets of α-successor distributions of s2 serving as candidates
for possible µ2.

the condition µ1 ⊑R µ2 for the relation R considered. The set Sim(s1,α,µ1,s2) is represented
as a list. This and some subsequent notations are similar to those used by Baier et al. in [3].
We use the function head(·) to read the first element of a list; tail(·) to read all but the first
element of a list; and empty(·) to check whether a list is empty. As long as the network

for a fixed candidate µ2 = head(Sim(s1,α,µ1,s2)) allows a flow of value 1 over the iterations,
we stick to it, and we can reuse the flow and distance function from previous iterations. If
by deleting some edges from N (µ1, µ2, R), its flow value falls below 1, we delete µ2 from

Sim(s1,α,µ1,s2) and pick the next candidate.
The algorithm ActSmf, shown as Algorithm 4, implements this. It has to be called

for each pair (s1, s2) and each successor distribution s1
α
−→ µ1 of s1. It takes as input the

list of remaining candidates Sim
(s1,α,µ1,s2)
i−1 , the information from the previous iteration (the

network N (µ1, µ2, Ri−1), flow fi−1, and distance function di−1), and the set of edges that
have to be deleted from the old network Di−1.

Lemma 4.8. Let (s1, s2) ∈ R1, α ∈ Act(s1), and µ1 such that s1
α
−→ µ1. Let Sim1 =

Stepsα(s2). Then ActSmfinit returns true iff ∃µ2 with s2
α
−→ µ2 ∧ µ1 ⊑R1

µ2. For some

i > 1, let Simi−1, N (µ1, µ2, Ri−1), fi−1 and di−1 be as returned by some earlier call to

ActSmf or ActSmfinit . Let Di−1 = (Ri−1 \ Ri) ∩ (Supp(µ1) × Supp(µ2)) be the set of

edges that will be removed from the network during the (i− 1)th call of ActSmf. Then, the

(i− 1)th call of algorithm ActSmf returns true iff: ∃µ2 with s2
α
−→ µ2 ∧ µ1 ⊑Ri

µ2.

Proof. Once Smf returns false because the maximum flow for the current candidate µ2 has
value < 1, it will never become a candidate again, as edge deletions cannot lead to increased
flow. The correctness proof is then the same as the proof of Lemma 4.3.

24 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

SimRel
PA
s (M)

5.1: R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2) ∧Act(s1) ⊆ Act(s2)} and i← 1
5.2: R2 ← ∅
5.3: for all (s1, s2) ∈ R1 do

5.4: Listener (s1,s2) ← {(u1, α, µ1, u2, µ2) | L(u1) = L(u2)∧u1
α
−→ µ1∧u2

α
−→ µ2

∧ µ1(s1) > 0 ∧ µ2(s2) > 0}
5.5: for all α ∈ Act(s1), µ1 ∈ Stepsα(s1) do

5.6: Sim
(s1,α,µ1,s2)
1 ← Stepsα(s2)

5.7: (matchα,µ1
,Sim

(s1,α,µ1,s2)
1 ,N (s1, α, µ1, s2, µ2, R1), f

arc
1 , darc

1)

← ActSmfinit(1, µ1,Sim
(s1,α,µ1,s2)
1 , R1)

5.8: if
∧

α∈Act(s1)

∧

µ1∈Stepsα(s1) matchα,µ1
then

5.9: R2 ← R2 ∪ {(s1, s2)}
5.10: while Ri+1 6= Ri do

5.11: i← i + 1
5.12: Ri+1 ← ∅ and Di−1 ← Ri−1 \Ri

5.13: for all (s1, s2) ∈ R, α ∈ Act(s1), µ1 ∈ Stepsα(s1), µ2 ∈ Stepsα(s2) do

5.14: D
(s1,α,µ1,s2,µ2)
i−1 ← ∅

5.15: for all (s1, s2) ∈ Di−1, (u1, α, µ1, u2, µ2) ∈ Listener (s1,s2) do

5.16: if (u1, u2) ∈ Ri−1 then

5.17: D
(u1,α,µ1,u2,µ2)
i−1 ← D

(u1,α,µ1,u2,µ2)
i−1 ∪ {(s1, s2)}

5.18: for all (s1, s2) ∈ R do

5.19: for all α ∈ Act(s1), µ1 ∈ Stepsα(s1) do

5.20: (matchα,µ1
,Sim

(s1,α,µ1,s2)
i ,N (s1, α, µ1, s2, µ2, Ri), f

arc
i , darc

i)

← ActSmf(i,Sim
(s1,α,µ1,s2)
i−1 ,N (s1, α, µ1, s2, µ2, Ri−1),

farc
i−1, d

arc
i−1,D

arc
i−1)

5.21: if
∧

α∈Act(s1)

∧

µ1∈Stepsα(s1)
matchα,µ1

then

5.22: Ri+1 ← Ri+1 ∪ {(s1, s2)}
5.23: return Ri

Algorithm 5: Algorithm for deciding strong simulation for PAs, where arc denotes the
associated parameter (s1, α, µ1, s2, µ2).

The algorithm SimRel
PA
s for deciding strong simulation for PAs is presented as Algo-

rithm 5. During the initialisation (lines 5.1–5.6, intermixed with iteration 1 in lines 5.7–5.9),

for (s1, s2) ∈ R1 and s1
α
−→ µ1, the list Sim

(s1,α,µ1,s2)
1 is initialised to Stepsα(s2) (line 5.6),

as no α-successor distribution can be excluded as a candidate a priori. As in SimRel
FPS
s ,

the set Listener (s1,s2) for (s1, s2) is introduced which contains tuples (u1, α, µ1, u2, µ2) such
that the network N (u1, α, µ1, u2, µ2, R1) contains the edge (s1, s2).

The main iteration starts with generating the sets D
(u1,α,µ1,u2,µ2)
i−1 in lines 5.13–5.17 in

a similar way as SimRel
FPS
s . Lines 5.19–5.22 check Condition 4.1 by calling ActSmf for

each action α and each α-successor distribution µ1 of s1. The condition is true if and only
if matchα,µ1

is true for all α ∈ Act(s1) and µ1 ∈ Stepsα(s1). In this case we insert the pair
(s1, s2) into Ri+1 (line 5.22). We give the correctness of the algorithm:

Theorem 4.9. When SimRel
PA
s (M) terminates, the returned relation equals -M.

DECIDING PROBABILISTIC SIMULATIONS 25

Proof. The proof follows the same lines as the proof of the correctness of SimRel
FPS
s in

Theorem 4.5. The only new element is that we now have to quantify over the actions and
successor distributions as prescribed by Definition 2.11. This translates to a conjunction in
lines 5.8 and 5.21 of the algorithm. Exploiting Lemma 4.8 we get the correctness.

Now we give the complexity of the algorithm:

Theorem 4.10. The algorithm SimRel
PA
s (M) runs in time O(m2n) and in space O(m2).

If the fanout of M is bounded by a constant, it has complexity O(n2), both in time and

space.

Proof. We first consider the space complexity. We save the sets D
(s1,α,µ1,s2,µ2)
i , the networks

N (s1, α, µ1, s2, µ2, Ri) which are updated in every iteration, Listener (s1,s2) and the sets

Sim
(s1,α,µ1,s2)
i . The size of the set D

(s1,α,µ1,s2,µ2)
i is in O(|µ1| |µ2|), which is the maximal

number of edges of N (s1, α, µ1, s2, µ2, Ri). Summing over all (s1, α, µ1, s2, µ2), we get:
∑

s1∈S

∑

α∈Act(s1)

∑

µ1∈Stepsα(s1)

∑

s2∈S

∑

µ2∈Stepsα(s2)

|µ1| |µ2| ≤ m2 (4.2)

Similarly, the memory needed for saving the networks has the same bound O(m2). Now
we consider the set Listener (s1,s2) for the pair (s1, s2) ∈ R1. Let (u1, α, µ1, u2, µ2) ∈
Listener (s1,s2). Then, it holds that s1 ∈ Supp(µ1) and s2 ∈ Supp(µ2). Hence, the tuple
(u1, α, µ1, u2, µ2) can be an element of Listener (s1,s2) of some arbitrary pair (s1, s2) at most
|µ1| |µ2| times, which corresponds to the maximal number of edges between the set of nodes

Supp(µ1) and Supp(µ2) in N (s1, α, µ1, s2, µ2, R1). Summing over all (s1, α, µ1, s2, µ2), we
get that memory needed for the set Listener is also bounded byO(m2). For each pair (s1, s2)

and s1
α
−→ µ1, the set Sim

(s1,α,µ1,s2)
1 has size |Stepsα(s2)|. Summing up, this is smaller than

or equal to m2 according to Inequality 4.2. Hence, the overall space complexity amounts to
O(m2).

Now we consider the time complexity. All initialisations (lines 5.1–5.6 of SimRel
PA
s and

the initialisations in ActSmfinit , which calls Smfinit) take O(m2) time. We observe that a
pair (s1, s2) belongs to Di during at most one iteration. Because of the Inequality 4.2, the
time needed in lines 5.13–5.17 is in O(m2). The rest of the algorithm is dominated by the
time needed for calling Smf in line 4.2 of ActSmf. By Lemma 4.4, the time complexity
for successful and unsuccessful checks concerning the tuple (s1, α, µ1, s2, µ2) is bounded by
O(g |µ1| |µ2|). Taking the sum over all possible tuples (s1, α, µ1, s2, µ2) we get the bound
gm2 according to Inequality 4.2. Hence, the complexity is O(m2n). If the fanout g is
bounded by a constant, we have m ≤ gn. Thus, the time complexity is in the order of
O(n2). In this case the space complexity is also O(n2).

Remark 4.11. Let M = (S,Act,P, L) be a PA, and let k =
∑

s∈S

∑

α∈Act(s) |Stepsα(s)|,

called the number of transitions in [3], denote the number of all distributions in M. The
algorithm for deciding strong simulation introduced by Baier et al. has time complexity
O((kn6 + k2n3)/ log n), and space complexity O(k2). The number of distributions k and
the size of transitions m are related by k ≤ m ≤ nk. The left equality is established if |µ| = 1
for all distributions, and the right equality is established if |µ| = n for all distributions.

The decision algorithm for strong simulation for CPAs can be adapted from SimRel
PA
s

in Algorithm 5 easily: Notations are extended with respect to rate functions instead of

26 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

distributions in an obvious way. To guarantee the additional rate condition, we rule out
successor rate functions of s2 that violate it by replacing line 5.6 by:

Sim
(s1,α,r1,s2)
1 ← {r2 ∈ Stepsα(s2) | r1(S) ≤ r2(S)}.

For each pair (s1, s2), and successor rate functions ri ∈ Stepsα(si) (i = 1, 2), the subrou-
tine for checking whether r1 ⊑Ri

r2 is then performed in the network N (µ(r1), µ(r2), Ri).
Obviously, the so obtained algorithm for CPAs has the same complexity O(m2n).

4.4. Strong Probabilistic Simulation. The problem of deciding strong probabilistic sim-
ulation for PAs has not been tackled yet. We show that it can be computed by solving LP
problems which are decidable in polynomial time [27]. In Subsection 4.4.1, we first present
an algorithm for PAs. We extend the algorithm to deal with CPAs in Subsection 4.4.2.

4.4.1. Probabilistic Automata. Recall that strong probabilistic simulation is a relaxation
of strong simulation in the sense that it allows combined transitions, which are convex
combinations of multiple distributions belonging to equally labelled transitions. Again, the
most important part is to check whether s1 -

p
R s2 where R is the current relation. By

Definition 2.15, it suffices to check L(s1) = L(s2) and the condition:

∀α ∈ Act . ∀s1
α
−→ µ1. ∃s2

α
; µ2 with µ1 ⊑R µ2 (4.3)

However, since the combined transition involves the quantification of the constants ci ∈
[0, 1], there are possibly infinitely many such µ2. Thus, one cannot check µ1 ⊑R µ2 for each
possible candidate µ2. The following lemma shows that this condition can be checked by
solving LP problems which are decidable in polynomial time [27, 38].

Lemma 4.12. Let M = (S,Act,P, L) be a given PA, and let R ⊆ S × S. Let (s1, s2) ∈ R

with L(s1) = L(s2) and Act(s1) ⊆ Act(s2). Then, s1 -
p
R s2 iff for each transition s1

α
−→ µ,

the following LP has a feasible solution:

k
∑

i=1

ci = 1 (4.4)

0 ≤ ci ≤ 1 ∀ i = 1, . . . , k (4.5)

0 ≤ f(s,t) ≤ 1 ∀(s, t) ∈ R⊥ (4.6)

µ(s) =
∑

t∈R⊥(s)

f(s,t) ∀s ∈ S⊥ (4.7)

∑

s∈R−1

⊥
(t)

f(s,t) =

k
∑

i=1

ciµi(t) ∀t ∈ S⊥ (4.8)

where k = |Stepsα(s2)| > 0 and Stepsα(s2) = {µ1, . . . , µk}.

Proof. First assume that s1 -
p
R s2. Let s1

α
−→ µ. By the definition of simulation up to

R for strong probabilistic simulation, there exists a combined transition s2
α
; µc with

µ ⊑R µc. Let Stepsα(s2) = {µ1, . . . , µk} where k = |Stepsα(s2)|. Now Act(s1) ⊆ Act(s2)
implies k > 0. By definition of combined transition (Definition 2.14), there exist constants

c1, . . . , ck ∈ [0, 1] with
∑k

i=1 ci = 1 such that µc =
∑k

i=1 ciµi. Thus Constraints 4.4 and 4.5
hold. Since µ ⊑R µc, there exists a weight function ∆ : S⊥ × S⊥ → [0, 1] for (µ, µc) with

DECIDING PROBABILISTIC SIMULATIONS 27

SimRel
PA,p
s (M)

6.1: R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2) ∧Act(s1) ⊆ Act(s2)} and i← 0
6.2: repeat

6.3: i← i + 1
6.4: Ri+1 ← ∅
6.5: for all (s1, s2) ∈ Ri do

6.6: for all α ∈ Act(s1), µ1 ∈ Stepsα(s1) do

6.7: matchα,µ1
← LP (s1, α, µ1, s2)

6.8: if
∧

α∈Act(s1)

∧

µ1∈Stepsα(s1) matchα,µ1
then

6.9: Ri+1 ← Ri+1 ∪ {(s1, s2)}
6.10: until Ri+1 = Ri

6.11: return Ri

Algorithm 6: Algorithm for deciding strong probabilistic simulation for PAs.

respect to R. For every pair (s, t) ∈ R⊥, let f(s,t) := ∆(s, t). Thus, Constraint 4.6 holds
trivially. By Definition 2.7 of weight functions, it holds that (i) ∆(s, t) > 0 implies that
(s, t) ∈ R⊥, (ii) µ(s) =

∑

t∈S⊥
∆(s, t) for s ∈ S⊥, and (iii) µc(t) =

∑

s∈S⊥
∆(s, t) for all

t ∈ S⊥. Observe that (i) implies that for all (s, t) 6∈ R⊥, we have that ∆(s, t) = 0. Thus,
(ii) and (iii) imply Equations 4.7 and 4.8 respectively.

Now we show the other direction. Let k = |Stepsα(s2)| and Stepsα(s2) = {µ1, . . . , µk}.

By assumption, for each s1
α
−→ µ, we have a feasible solution c1, . . . , ck and f(s,t) for all (s, t) ∈

R⊥ which satisfies all of the constraints. We define µc =
∑k

i=1 ciµi. By Definition 2.14,

µc is a combined transition, thus s2
α
; µc. It remains to show that µ ⊑R µc. We define a

function ∆ as follows: ∆(s, t) equals f(s,t) if (s, t) ∈ R⊥ and 0 otherwise. With the help of
Constraints 4.6, 4.7 and 4.8 we have that ∆ is a weight function for (µ, µc) with respect to
R, thus µ ⊑R µc.

Now we are able to check Condition 4.3 by solving LP problems. For a PA M =
(S,Act,P, L), and a relation R ⊆ S × S, let (s1, s2) ∈ R with L(s1) = L(s2) and Act(s1) ⊆

Act(s2). For s1
α
−→ µ1, we introduce a predicate LP (s1, α, µ, s2) which is true iff the LP

problem described as in Lemma 4.12 has a solution. Then, s1 -
p
R s2 iff the conjunc-

tion
∧

α∈Act(s1)

∧

µ1∈Stepsα(s1) LP (s1, α, µ1, s2) is true. The algorithm, which is denoted by

SimRel
PA,p
s (M), is depicted in Algorithm 6. It takes the skeleton of SimRels(M). The key

difference is that we incorporate the predicate LP (s1, α, µ1, s2) in line 6.7. The correctness
of the algorithm SimRel

PA,p
s (M) can be obtained from the one of SimRels(M) together

with Lemma 4.12. We discuss briefly the complexity. The number of variables in the LP
problem in Lemma 4.12 is k+|R|, and the number of constraints is 1+k+|R|+2 |S| ∈ O(|R|).

In iteration i of SimRel
PA,p
s (M), for (s1, s2) ∈ Ri and s1

α
−→ µ1, the corresponding LP prob-

lem is queried once. The number of iterations is in O(n2). Therefore, in the worst case, one
has to solve n2

∑

s∈S

∑

α∈Act(s)

∑

µ∈Stepsα(s) 1 ∈ O(n2m) many such LP problems and each

of them has at most O(n2) constraints.

4.4.2. Continuous-time Probabilistic Automata. Now we discuss how to extend the algo-
rithm to handle CPAs. LetM = (S,Act,R, L) be a CPA. Similar to PAs, the most impor-
tant part is to check the condition s1 -

p
R s2 for some relation R ⊆ S×S. By Definition 2.19,

28 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

SimRel
CPA,p
s (M)

7.1: R1 ← {(s1, s2) ∈ S × S | L(s1) = L(s2) ∧Act(s1) ⊆ Act(s2)} and i← 0
7.2: repeat

7.3: i← i + 1
7.4: Ri+1 ← ∅
7.5: for all (s1, s2) ∈ Ri do

7.6: for all α ∈ Act(s1), r1 ∈ Stepsα(s1), E ∈ E(s2) do

7.7: matchα,r1,E ← LP ′(s1, α, r1, s2, E)
7.8: if

∧

α∈Act(s1)

∧

r1∈Stepsα(s1)

∧

E∈E(s2)
matchα,r1,E then

7.9: Ri+1 ← Ri+1 ∪ {(s1, s2)}
7.10: until Ri+1 = Ri

7.11: return Ri

Algorithm 7: Algorithm for deciding strong probabilistic simulation for CPAs.

it suffices to check L(s1) = L(s2) and the condition:

∀α ∈ Act . ∀s1
α
−→ r1. ∃s2

α
; r2 with µ(r1) ⊑R µ(r2) ∧ r1(S) ≤ r2(S) (4.9)

Recall that for CPAs only successor rate functions with the same exit rate can be combined

together. For state s ∈ S, we let E(s) := {r(S) | s
α
−→ r} denote the set of all possible exit

rates of α-successor rate functions of s. For E ∈ E(s) and α ∈ Act(s), we let StepsE
α (s) =

{r ∈ Stepsα(s) | r(S) = E} denote the set of α-successor rate functions of s with the same
exit rate E. As for PAs, to check the condition s1 -

p
R s2 we resort to a reduction to LP

problems.

Lemma 4.13. LetM = (S,Act,R, L) be a given CPA, and let R ⊆ S×S. Let (s1, s2) ∈ R
with L(s1) = L(s2) and that Act(s1) ⊆ Act(s2). Then, s1 -

p
R s2 iff for each transition

s1
α
−→ r either r(S) = 0, or there exists E ∈ E(s2) with E ≥ r(S) such that the following

LP has a feasible solution, which consists of Constraints 4.4, 4.5, 4.6 of Lemma 4.12, and

additionally:

r(s) = r(S)
∑

t∈R⊥(s)

f(s,t) ∀s ∈ S⊥ (4.10)

E
∑

s∈R−1

⊥ (t)

f(s,t) =

k
∑

i=1

ciri(t) ∀t ∈ S⊥ (4.11)

where k =
∣

∣StepsE
α (s)

∣

∣ with StepsE
α (s) = {r1, . . . , rk}.

Proof. The proof follows the same strategy as the proof of Lemma 4.12, in which the induced
distribution of the corresponding rate function should be used.

Now we are able to check Condition 4.9 by solving LP problems. For a CPA M =
(S,Act,R, L), and a relation R ⊆ S × S, let (s1, s2) ∈ R with L(s1) = L(s2) and Act(s1) ⊆

Act(s2). For s1
α
−→ r1, and E ∈ E(s2), we introduce the predicate LP ′(s1, α, r1, s2, E) which

is true iff E ≥ r1(S) and the corresponding LP problem has a solution. Then, s1 -
p
R s2 iff

the conjunction
∧

α∈Act(s1)

∧

r1∈Stepsα(s2)

∧

E∈E(s2)
LP ′(s1, α, r1, s2, E) is true. The decision

algorithm is given in Algorithm 7. As complexity we have to solve O(n2m) LP problems
and each of them has at most O(n2) constraints.

DECIDING PROBABILISTIC SIMULATIONS 29

5. Algorithms for Deciding Weak Simulations

We now turn our attention to weak simulations. Similar to strong simulations, the core of
the algorithm is to check whether s1 wR s2, i.e., s2 weakly simulates s1 up to the current
relation R. As for strong simulation up to R, s1 wR s2 does not imply s1 wM s2, since
no conditions are imposed on pairs in R different from (s1, s2). By the definition of weak
simulation, for fixed characteristic functions δi (i = 1, 2), the weight function conditions
can be checked by applying maximum flow algorithms. Unfortunately, δi-functions are not
known a priori. Inspired by the parametric maximum flow algorithm, in this chapter, we
show that one can determine whether such characteristic functions δi exist with the help of
breakpoints, which can be computed by analysing a parametric network constructed out of
P(s1, ·),P(s2, ·) and R. We present dedicated algorithms for DTMCs in Subsection 5.1 and
CTMCs in Subsection 5.2.

5.1. An Algorithm for DTMCs. Let M = (S,P, L) be a DTMC. Let R ⊆ S × S be
a relation and s1 R s2. Whether s2 weakly simulates s1 up to R is equivalent to whether
there exist functions δi : S → [0, 1] such that the conditions in Definition 2.21 are satisfied.
Assume that we are given the Ui-characterising functions δi. In this case, s1 wR s2 can be
checked as follows:

• Concerning Condition 1a we check whether for all v ∈ S with δ1(v) < 1 it holds that
v R s2. Similarly, for Condition 1b, we check whether for all v ∈ S with δ2(v) < 1 it
holds that s1 R v.
• The reachability condition can be checked by using standard graph algorithms. In more

detail, for each u with δ1(u) > 0, the condition holds if a state in R(u) is reachable from
s2 via R(s1) states.
• Finally consider Condition 2. From the given δi functions we can compute Ki. In case

of that K1 > 0 and K2 > 0, we need to check whether there exists a weight function
for the conditional distributions P(s1, ·)/K1 and P(s2, ·)/K2 with respect to the current
relation R. From Lemma 4.1, this is equivalent to check whether the maximum flow for
the network constructed from (P(s1, ·)/K1,P(s2, ·)/K2) and R has value 1.

To check s1 wR s2, we want to check whether such δi functions exist. The difficulty is
that there exist uncountably many possible δi functions. In this section, we first show that
whether such δi exists can be characterised by analysing a parametric network in Subsec-
tion 5.1.1. Then, in Subsection 5.1.2, we recall the notion of breakpoints, and show that the
breakpoints play a central role in the parametric networks considered: only these points need
to be considered. Based on this, we present the algorithm for DTMCs in Subsection 5.1.3.
An improvement of the algorithm for certain cases is reported in Subsection 5.1.4.

5.1.1. The Parametric Network N (γ). Let γ ∈ R≥0. Recall that N (P(s1, ·), γP(s2, ·), R)
is obtained from the network N (P(s1, ·),P(s2, ·), R) be setting the capacities to the sink %

by: c(t,%) = γP(s2, t). If s1, s2, R are clear from the context, we use N (γ) to denote the
network N (P(s1, ·), γP(s2, ·), R) for arbitrary γ ∈ R≥0.

We introduce some notations. We focus on a particular pair (s1, s2) ∈ R, where R is the
current relation. We partition the set post (si) into MUi (for: must be in Ui) and PVi (for:
potentially in Vi). The set PV1 consists of those successors of s1 which can be either put
into U1 or V1 or both: PV1 = post (s1)∩R−1(s2). The set MU1 equals post(s1)\PV1, which

30 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

s1

u1

1
4

o1

1
2

v1

1
4

s1

u2

1
8

o2

1
8

o3

1
16

v2

11
16

Figure 8: A simple DTMC.

consists of the successor states which can only be placed in U1. The sets PV2 and MU2

are defined similarly by: PV2 = post(s2) ∩ R(s1) and MU2 = post(s2)\PV2. Obviously,
δi(u) = 1 for u ∈MUi for i = 1, 2.

Example 5.1. Consider the DTMC in Figure 8 and the relation R = {(s1, s2), (s1, v2),
(v1, s2), (u1, u2), (o1, o2), (o1, v2), (v1, o3), (v1, v2), (o2, o1)}. We have PV1 = {v1} and PV2 =
{v2}. Thus, MU1 = {u1, o1}, MU2 = {u2, o2, o3}.

We say a flow function f of N (γ) is valid for N (γ) iff f saturates all edges (1, u1) with
u1 ∈MU1 and all edges (u2,%) with u2 ∈MU2. If there exists a valid flow f for N (γ), we
say that γ is valid for N (γ). The following lemma considers the case in which both s1 and
s2 have visible steps:

Lemma 5.2. Let s1 R s2. Assume that there exists a state s′1 ∈ post(s1) such that s′1 6∈
R−1(s2), and s′2 ∈ post(s2) such that s′2 6∈ R(s1). Then, s1 wR s2 iff there exists a valid γ
for N (γ).

Proof. By assumption, we have that s′i ∈MUi for i = 1, 2, thus MUi 6= ∅, and it holds that
δi(s

′
i) = 1 for i = 1, 2.
We first show the only if direction. Assume s1 wR s2, and let δi, Ui, Vi,Ki,∆ (for

i = 1, 2) as described in Definition 2.21. Since MUi 6= ∅ for i = 1, 2, both K1 and K2 are
greater than 0. We let γ = K1/K2. For s, s′ ∈ S, we define the function f for N (γ):

f(1, s) = P(s1, s)δ1(s), f(s, t) = K1∆(s, t), f(s,%) = γP(s2, s)δ2(s)

Since δi(s) ≤ 1 (i = 1, 2) for s ∈ S, f(1, s) ≤ P(s1, s) and f(s,%) ≤ γP(s2, s). Therefore, f
satisfies the capacity constraints. f also satisfies the conservation rule:

f(s, S) = K1∆(s, S) = P(s1, s)δ1(s) = f(1, s)

f(S, s) = K1∆(S, s) = γK2∆(S, s) = γP(s2, s)δ2(s) = f(s,%)

Hence, f is a flow function for N (γ). For u1 ∈ MU1, we have δ1(u1) = 1, therefore,
f(1, u1) = P(s1, u1). Analogously, f(u2,%) = γP(s2, u2) for u2 ∈ MU2. Hence, f is valid
for N (γ), implying that γ is valid for N (γ).

Now we show the if direction. Assume that there exists γ > 0 and a valid flow f
for N (γ). The function δ1 is defined by: δ1(s) equals f(1, s)/P(s1, s) if s ∈ post(s1) and 0
otherwise. The function δ2 is defined similarly: δ2(s) equals f(s,%)/γP(s2, s) if s ∈ post(s2)
and 0 otherwise. Let the sets Ui and Vi be defined as required by Definition 2.21. It follows
that

K1 =
∑

s∈U1

δ1(s)P(s1, s) =
∑

s∈U1

f(1, s) = f(1, U1)

K2 =
∑

s∈U2

δ2(s)P(s2, s) =
∑

s∈U2

f(s,%)

γ
=

f(U2,%)

γ

DECIDING PROBABILISTIC SIMULATIONS 31

o1 o2

1
o3

%

v1 v2

u1 u2

1

2

1

4

1
4

11
8

1
4

1
8

1
4

o1 o2

1′

o3

%′
v1 v2

1%

u1 u2

1
4

3
4

1
4

1
4

11
8

1
4

1
8

5
8

1
2

Figure 9: Left: The network N (2) of the DTMC in Figure 8; Right: The transformed
network Nt(2) for N (2).

Since the amount of flow out of 1 is the same as the amount of flow into %, we have
K1/K2 = γ. Since ∅ 6= MUi ⊆ Ui for i = 1, 2, both of K1 and K2 are greater than 0. We
show that the Conditions 1a and 1b of Definition 2.21 are satisfied. For v1 ∈ V1, we have
that δ1(v1) < 1 which implies that f(1, v1) < P(s1, v1). Since f is valid for N (γ), and since
the edge (1, v1) is not saturated by f , it must hold that v1 ∈ PV1. Therefore, v1 R s2.
Similarly, we can prove that s1 R v2 for v2 ∈ V2.

We define ∆(w,w′) = f(w,w′)/K1 for w,w′ ∈ S. Assume that ∆(w,w′) > 0. Then,
f(w,w′) > 0, which implies that (w,w′) is an edge of N (γ), therefore, (w,w′) ∈ R. By the
flow conservation rule, f(1, w) ≥ f(w,w′) > 0, implying that δ1(w) > 0. By the definition
of U1, we obtain that w ∈ U1. Similarly, we can show that w′ ∈ U2. Hence, the Condition 2a
is satisfied. To prove Condition 2b:

∆(w,U2) =
∑

u2∈U2

f(w, u2)

K1
=

f(w,U2)

K1

(∗)
=

f(1, w)

K1
=

δ1(w)P(s1, w)

K1

where equality (∗) follows from the flow conservation rule. Therefore, for w ∈ S we have
that K1∆(w,U2) = P(s1, w)δ1(w). Similarly, we can show K2∆(U1, w) = P(s2, w)δ2(w).
Condition 2b is also satisfied. As K1 > 0 and K2 > 0, the reachability condition holds
trivially, hence, s1 wR s2.

Example 5.3. Consider again Example 5.1 with the relation R = {(s1, s2), (s1, v2), (v1, s2),
(u1, u2), (o1, o2), (o1, v2), (v1, o3), (v1, v2), (o2, o1)}. The network N (2) is depicted on the left
part of Figure 9. Edges without numbers have capacity ∞. It is easy to see that 2 is
valid for N (2): the corresponding flow sends 1

4 amount of flow along the path 1, u1, u2,%, 1
4

amount of flow along the path 1, o1, o2,%, 1
4 amount of flow along the path 1, o1, v2,%, and

1
8 amount of flow along the path 1, v1, o3,%.

For a fixed γ ∈ R>0, we now address the problem of checking whether there exists a
valid flow f for N (γ). This is a feasible flow problem (f has to saturate edges to MU1

and from MU2). As we have discussed in Section 3, it can be solved by applying a simple
transformation to the graph (in timeO(|MU1|+|MU2|)), solving the maximum flow problem
for the transformed graph, and checking whether the flow saturates all edges from the new
source.

Example 5.4. Consider the network N (2) on the left part of Figure 9. Applying the
transformation for the feasible flow problem described in Section 3, we get the transformed
network Nt(2) depicted on the right part of Figure 9. It is easy to see that the maximum

32 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

o1 o2

1

o3

%

v1 v2

u1 u2

1

2

1

4

1
4

11
16γ

γ
8

γ
16

γ
8

Figure 10: The network N (γ) of the DTMC in Figure 8 in Example 5.1.

flow h forNt(2) has value 11
8 . Namely: It sends 1

4 amount of flow along the path 1′, u1, u2,%
′,

1
4 amount of flow along the path 1′, o1, o2,%

′, 1
4 amount of flow along 1′, o1, v2,%,1,%′, 1

8

amount of flow along 1′,%,1, v1, o3,%
′, and 1

2 amount of flow along 1′,%,1,%′. Thus, it uses
all capacities of edges from 1′. This implies that 2 is valid for the network N (2).

5.1.2. Breakpoints. Consider the pair (s1, s2) ∈ R. Assume the conditions of Lemma 5.2 are
satisfied, thus, to check whether s1 wR s2 it is equivalent to check whether a valid γ forN (γ)
exits. We show that only a finite possible γ, called breakpoints, need to be considered. The
breakpoints can be computed using a variant of the parametric maximum flow algorithm.
Then, s1 wR s2 if and only if for some breakpoint it holds that the maximum flow for the
corresponding transformed network Nt(γ) has a large enough value.

Let |V | denote the number of vertices of N (γ). Let κ(γ) denote the minimum cut

capacity function of the parameter γ, which is the capacity of a minimum cut of N (γ) as a
function of γ. The capacity of a minimum cut equals the value of a maximum flow. If the
edge capacities in the network are linear functions of γ, κ(γ) is a piecewise-linear concave
function with at most |V |−2 breakpoints [18], i. e., points where the slope dκ

dγ
changes. The

|V | − 1 or fewer line segments forming the graph of κ(γ) correspond to |V | − 1 or fewer
distinct minimal cuts. The minimum cut can be chosen as the same on a single linear piece
of κ(γ), and at breakpoints certain edges become saturated or unsaturated. The capacity
of a minimum cut for some γ∗ gives an equation that contributes a line segment to the
function κ(γ) at γ = γ∗. Moreover, this line segment connects the two points (γ1, κ(γ1))
and (γ2, κ(γ2)), where γ1, γ2 are the nearest breakpoints to the left and right, respectively.

Example 5.5. Consider the DTMC in Figure 8, together with the relation R = {(s1, s2),
(s1, v2), (v1, s2), (u1, u2), (o1, o2), (o1, v2), (v1, o3), (v1, v2), (o2, o1)}. The network N (γ) for
the pair (s1, s2) is depicted in Figure 10.

There are two breakpoints, namely 6
7 and 2. For γ ≤ 6

7 , all edges leading to the sink can
be saturated. This can be established by the following flow function f : sending γ

8 amount

of flow along the path 1, u1, u2,%, γ
8 amount of flow along the path 1, o1, o2,%, 11γ

24 amount

of flow along the path 1, o1, v2,%, γ
16 amount of flow over 1, v1, o3,%, 11γ

48 amount of flow

along the path 1, v1, v2,%. The amount of flow out of node o1, denoted by f(o1, S), is 7γ
12 .

Given that γ ≤ 6
7 , we have that f(o1, S) ≤ 1

2 . Similarly, consider the amount of flow out of

node v1, which is denoted by f(v1, S), is 7γ
24 which implies that f(v1, S) ≤ 1

4 . The maximum

flow thus has value |f | = γ
8 + γ

8 + 11γ
24 + γ

16 + 11γ
48 = γ. Thus the value of the maximum flow,

or equivalently the value of the minimum cut, for γ ≤ 6
7 is κ(γ) = γ.

DECIDING PROBABILISTIC SIMULATIONS 33

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5 3
T

he
 m

ax
im

um
 fl

ow

Gamma value

breakpoints

Figure 11: The value of the maximum flow, or equivalently the value of the minimum cut,
as a function of γ for the network in Figure 10.

Observe that for γ = 6
7 , the edges to v1 and o1 are saturated, i.e., we have used full

capacities of the edge (1, v1) and (1, o1). Thus, by a greater value of γ, although the
capacities c({v2, o2, o3},%) increase (become greater than 3

4), no additional flow can be sent
through {v1, o1}. For the other breakpoint 2, we observe that for a value of γ ≤ 2, we can
still send γ

8 through the path 1, u1, u2,%, but for γ > 2, the edge to u1 keeps saturated, thus

the amount of flow sent through this path does not increase any more. Thus, for γ ∈ [67 , 2],

the maximum value, or the value of the minimum cut, is 3
4 + γ

8 . The first term 3
4 corresponds

to the amount of flow through v1 and o1. The breakpoint 6
7 is not valid since the edge to

u1 can not be saturated. As discussed in Example 5.4, the breakpoint 2 is valid. The curve
for κ(γ) is depicted in Figure 11.

In the following lemma we show that if there is any valid γ, then at least one breakpoint
is valid.

Lemma 5.6. Assume γ∗ ∈ (γ1, γ2) where γ1, γ2 are two subsequent breakpoints of κ(γ), or

γ1 = 0 and γ2 is the first breakpoint, or γ1 is the last breakpoint and γ2 = ∞. Assume γ∗

is valid for N (γ∗), then, γ is valid for N (γ) for all γ ∈ [γ1, γ2].

Proof. Consider the networkN (γ∗). Assume that the maximum flow fγ∗ is a valid maximum
flow for N (γ∗).

Assume first γ′ ∈ (γ∗, γ2]. We use the augmenting path algorithm [1] to obtain a
maximum flow f∗ in the residual network Nfγ∗

(γ′), requiring that the augmenting path
contains no cycles, which is a harmless restriction. Then, fγ′ := fγ∗ + f∗ is a maximum
flow in N (γ′). Since fγ∗ saturates edges from 1 to MU1, fγ′ saturates edges from 1 to
MU1 as well , as flow along an augmenting path without cycles does not un-saturate edges
to MU1. We choose the minimum cut (X,X ′) for N (γ∗) with respect to fγ∗ such that

MU2 ∩ X ′ = ∅, or equivalently MU2 ⊆ X. This is possible since fγ∗ saturates all edges
(u2,%) with u2 ∈ MU2. The minimum cut for fγ′ , then, can also be chosen as (X,X ′), as
(γ′, κ(γ′)) lies on the same line segment as (γ∗, κ(γ∗)). Hence, fγ′ saturates the edges from

MU2 to %, which indicates that fγ′ is valid for N (γ′). Therefore, γ′ is valid for N (γ′) for
γ′ ∈ (γ∗, γ2].

Now let γ′ ∈ [γ1, γ
∗). For the valid maximum flow fγ∗ we select the minimal cut (X,X ′)

for N (γ∗) such that MU1 ∩X = ∅. Let d denote a valid distance function corresponding
to fγ∗. We replace fγ∗(v,%) by min{fγ∗(v,%), cγ′(v,%)} where cγ′ is the capacity function
of N (γ′). The modified flow is a preflow for the network N (γ′). Moreover, d stays a valid

34 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

u3 u4

1 u5 u6 %

o1 o2

v1 v2

u1 u2

1
4

1
4

1
8

1
8

1
4

γ
4

γ
4

γ
8

γ
8

γ
4

Figure 12: A network in which more than one breakpoint is valid.

distance function as no new residual edges are introduced. Then, we apply the preflow
algorithm to get a maximum flow fγ′ for the network N (γ′). Since no flow is pushed back

from the sink, edges from MU2 to % are kept saturated. Since (γ∗, κ(γ∗)) and (γ′, κ(γ′))
are on the same line segment, the minimal cut for fγ′ can also be chosen as (X,X ′), which
indicates that fγ′ saturates all edges to MU1. This implies that γ′ is valid for N (γ′) for
γ′ ∈ [γ1, γ

∗).

In Example 5.5, only one breakpoint is valid. In the following example we show that it
is in general possible that more than one breakpoint is valid.

Example 5.7. Consider the network depicted in Figure 12. By a similar analysis as Ex-
ample 5.5, we can compute that there are three breakpoints 1

2 , 1 and 2. Assuming that

MU1 = {o1} and MU2 = {o2}, we show that all γ ∈ [12 , 1] are valid. We send γ
4 amount

of flow along the path 1, o1, o2,%, and 1
4 −

γ
4 amount of flow along the path 1, o1, v2,%. If

γ ∈ [12 , 1], then 0 ≤ 1
4 −

γ
4 ≤

γ
4 implying that the flow on edge (v2,%) satisfies the capacity

constraints. Obviously this flow is feasible, and all γ ∈ [12 , 1] are valid for N (γ).

As we would expect now, it is sufficient to consider only the breakpoints of N (γ):

Lemma 5.8. There exists a valid γ for N (γ) iff one of the breakpoints of N (γ) is valid.

Proof. If there exists a valid γ for N (γ), Lemma 5.6 guarantees that one of the breakpoints
of κ(γ) is valid. The other direction is trivial.

For a given breakpoint, we need to solve one feasible flow problem to check whether it
is valid. In the network N (γ) the capacities of the edges leading to the sink are increasing
functions of a real-valued parameter γ. If we reverse N (γ), we get a parametric network
that satisfies the conditions in [18]: The capacities emanating from 1 are non-decreasing
functions of γ. So we can apply the breakpoint algorithm [18] to obtain all of the breakpoints
of N (γ).

5.1.3. The Algorithm for DTMCs. Let M be a DTMC and let SimRelw(M) denote the
weak simulation algorithm, which is obtained by replacing line 1.6 of SimRels(M) in
Algorithm 1 by: if s1 wR s2. The condition s1 wR s2 is checked in Ws(M, s1, s2, R), shown
as Algorithm 8.

The first part of the algorithm is the preprocessing part. Line 8.1 tests for the case
that s1 could perform only stutter steps with respect to the current relation R. If line 8.5

DECIDING PROBABILISTIC SIMULATIONS 35

Ws(M, s1, s2, R)

8.1: if post (s1) ⊆ R−1(s2) then

8.2: return true

8.3: if post (s2) ⊆ R(s1) then

8.4: U1 ← {s
′
1 ∈ post(s1) | s

′
1 6∈ R−1(s2)}

8.5: return (∀u1 ∈ U1. ∃s ∈ post(reach(s2) ∩R(s1)). s ∈ R(u1))
8.6: Compute all of the breakpoints b1 < b2 < . . . < bj of N (γ)
8.7: return (∃i ∈ {1, . . . , j}. bi is valid for N (bi))

Algorithm 8: Algorithm to check whether s1 wR s2.

is reached, s1 has at least one visible step, and all successors of s2 can simulate s1 up
to the current relation R. In this case we need to check the reachability Condition 3
of Definition 2.21, which is performed in line 8.5. Recall that reach(s) denotes the set
of states that are reachable from s with positive probability. If the algorithm does not
terminate in the preprocessing part, the breakpoints of the network N (γ) are computed.
Then, corresponding to Lemma 5.8, we check whether one of the breakpoints is valid. We
show the correctness of the algorithm Ws:

Lemma 5.9. The algorithm Ws(M, s1, s2, R) returns true iff s1 wR s2.

Proof. We first show the only if direction. Assume that Ws(M, s1, s2, R) returns true. We
consider three possible cases:

• The algorithm returns true at line 8.2. For this case we have that post(s1) ⊆ R−1(s2).
We choose U1 = ∅, V1 = post(s1), U2 = post(s2) and V2 = ∅ to fulfill the conditions in
Definition 2.21. Hence, s1 wR s2.
• The algorithm returns true at line 8.5. If the algorithm reaches line 8.5, the following

conditions hold: there exists a state s′1 ∈ post (s1) such that s′1 6∈ R−1(s2) (line 8.1), and
post(s2) ⊆ R(s1) (line 8.3). Let U1 = {s′1 ∈ post(s1) | s

′
1 6∈ R−1(s2)}, and define δi by:

δ1(s) = 1 if s ∈ U1, and 0 otherwise, δ2(s) = 0 for all s ∈ S. By construction, to show
s1 wR s2 we only need to show the reachability condition. Since the algorithm returns
true at line 8.5, it holds that for each u1 ∈ U1, there exists s ∈ post(reach(s2)∩R(s1)) such
that s ∈ R(u1). This is exactly the reachability condition required by weak simulation
up to R, thus s1 wR s2.
• The algorithm returns true at line 8.7. Thus, there exists breakpoint bi which is valid for
N (bi). Then, there exists a state s′1 ∈ post(s1) such that s′1 6∈ R−1(s2), and s′2 ∈ post(s2)
such that s′2 6∈ R(s1). By Lemma 5.2, we have that s1 wR s2.

Now we show the if direction. Assume that Ws returns false. It is sufficient to show that
s1 6wR s2. We consider two cases:

• The algorithm returns false at line 8.5. This implies that there exists a state s′1 ∈ post(s1)
such that s′1 6∈ R−1(s2) (line 8.1), and post(s2) ⊆ R(s1) (line 8.3). All states s′1 ∈ post(s1)
with s′1 6∈ R−1(s2) must be put into U1. However, since the algorithm returns false at
line 8.5, it holds that there exists a state u1 ∈ U1, such that there does not exist s ∈
post(reach(s2)∩R(s1)) with s ∈ R(u1). Thus the reachability condition of Definition 2.21
is violated which implies that s1 6wR s2.
• The algorithm returns false at line 8.7. Then, there exists a state s′1 ∈ post (s1) such that

s′1 6∈ R−1(s2), and s′2 ∈ post (s2) such that s′2 6∈ R(s1). Moreover, for all breakpoints b of

36 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

s1

u1

1
2

v1

1
2

s1

u2

1
2

v2

1
2

u1 u2

1 %

v1 v2

1

2

1

2

γ
2

γ
2

Figure 13: A simple DTMC for illustrating that not all maximum flows are valid.

N (γ), b is not valid for N (b). By Lemma 5.8, there does not exist a valid γ for N (γ). By
Lemma 5.2, we have that s1 6wR s2.

Now we state the correctness of the algorithm SimRelw for DTMCs:

Theorem 5.10. If SimRelw(M) terminates, the returned relation R equals wM.

Proof. The proof follows exactly the lines of the proof of Theorem 4.2. Let iteration k be
the last iteration of Ws. Then, by Lemma 5.9, for each pair (s1, s2) ∈ Rk, it holds that
s2 weakly simulates s1 up to Rk, so Rk is a weak simulation. On the other hand, one can
prove by induction that each Ri is coarser than w.

Complexity. For (s1, s2) ∈ R, we have shown that to check whether s1 wR s2 we could
first compute the breakpoints of N (γ), then solve O(|V |) many maximum flow problems.
To achieve a better bound, we first prove that applying a binary search method over the
breakpoints, we only need to consider O(log |V |) breakpoints, and thus solve O(log |V |)
maximum flow problems.

Assume that the sets MUi and PVi for i = 1, 2 are constructed as before for N (γ).
Recall that a flow function f of N (γ) is valid for N (γ) iff f saturates all edges (1, u1) with
u1 ∈ MU1 and all edges (u2,%) with u2 ∈ MU2. If f is also a maximum flow, we say that
f is a valid maximum flow of N (γ). We first reformulate Lemma 5.2 using maximum flow.

Lemma 5.11. There exists a valid flow f for N (γ) iff there exists a valid maximum flow

fm for N (γ).

Proof. Assume there exists a valid flow f for N (γ). We let Nf (γ) denote the residual
network. We use the augmenting path algorithm to get a maximum flow f ′ in the residual
network Nf (γ). Assume that the augmenting path contains no cycles, which is a harmless
restriction. Let fm = f + f ′. Obviously, fm is a maximum flow for N (γ), and it saturates
all of the edges saturated by f . Hence, fm is valid for N (γ). The other direction is simple,
since a valid maximum flow is also a valid flow for N (γ).

We first discuss how to get a valid maximum flow provided that γ is valid. Observe
that even if γ is valid for N (γ), not all maximum flows for N (γ) are necessarily valid.
Consider the DTMC on the left part of Figure 13. Assume that the relation R is given by
{(s1, s2), (s1, v2), (v1, s2), (u1, u2), (u1, v2)} and consider the pair (s1, s2). Thus, we have
that PV1 = {v1},MU1 = {u1}, PV2 = {v2},MU2 = {u2}. The network N (γ) is depicted
on the right part of Figure 13. The maximum flow f for N (1) has value 0.5. If f contains
positive sub-flow along the path 1, u1, v2,%, it does not saturate the edge (u2,%). On the
contrary, the flow along the single path 1, u1, u2,% with value 0.5 would be a valid maximum
flow. This example gives us the intuition to use the augmenting path through edges between
MU1 and MU2 as much as possible. For this purpose we define a cost function cost from

DECIDING PROBABILISTIC SIMULATIONS 37

edges in N (γ) to real numbers as follows: cost(u1, u2) = 2 for u1 ∈ MU1 and u2 ∈ MU2,
cost(u1, v2) = 1 for u1 ∈MU1 and v2 ∈ PV2, cost(v1, u2) = 1 for v1 ∈ PV1 and u2 ∈MU2,
cost(s, s′) = 0 otherwise. The costs of edges starting from source, or ending at sink, or
in PV1 × PV2 are 0. The cost of a flow f is defined by cost(f) =

∑

e∈E f(e)cost(e). By

definition of the cost function, we have the property cost(f) = f(1,MU1)+f(MU2,%), i.e.,
the cost equals the sum of the amount of flow from 1 into MU1 and from MU2 into %.

Lemma 5.12. Assume that γ > 0 is valid for N (γ). Let fγ denote a maximum flow over

N (γ) with maximum cost. Then, fγ is valid for N (γ).

Proof. By Lemma 5.11, provided γ is valid for N (γ), there exists a valid maximum flow
function g for N (γ). Since g saturates edges to MU1 and from MU2, obviously, cost(g) =
P(s1,MU1) + γP(s2,MU2). Assume that fγ is not valid, which indicates that fγ does not

saturate an edge (1, u1) with u1 ∈MU1 or an edge (u2,%) with u2 ∈MU2. Then, cost(fγ) =

f(1,MU1) + f(MU2,%) < P(s1,MU1) + γP(s2,MU2) = cost(g). This contradicts the
assumption that fγ has maximum cost.

Let NU(γ) denote the subnetwork of N (γ) where the set of vertices is restricted to
MU1,MU2 and {1,%}. The following lemma discusses how to construct a maximum flow
with maximum cost.

Lemma 5.13. Assume that f∗ is an arbitrary maximum flow of NU (γ) and f̃ is an arbitrary

maximum flow in the residual network Nf∗(γ) with the residual edges from MU1 back to 1

removed, as well as the residual edges from % back to MU2. Then fγ = f∗+ f̃ is a maximum

flow over N (γ) with maximum cost.

Proof. Recall that the cost of fγ is equal to cost(fγ) = fγ(1,MU1) + fγ(MU2,%). Assume
that cost(fγ) is not maximal for the sake of contradiction. Let f be a maximum flow
such that cost(fγ) < cost(f). Without loss of generality, we assume that fγ(1,MU1) <

f(1,MU1). It holds that fγ = f∗ + f̃ where f∗ is a maximum flow of NU (γ), and f̃ is a
maximum flow in the residual network Nf∗(γ) with the residual edges from MU1 back to

1 removed, as well as the residual edges from % back to MU2. On the one hand, f∗ sends
as much flow as possible along MU1 in NU(γ). Since in the residual network Nf∗(γ) edges
from MU1 back to 1 are removed, this guarantees that no flow can be sent back to 1 from
MU1. On the other hand, f̃ sends as much flow as possible from MU1 to PV2 (and also
from PV1 to MU2) in Nf∗(γ). Thus, fγ(1,MU1) must be maximal which contradicts the
assumption fγ(1,MU1) < f(1,MU1).

Assume that γ∗ is not valid. The following lemma determines, provided a valid γ exists,
whether it is greater or smaller than γ∗:

Lemma 5.14. Let γ∗ ∈ [0,∞), and let f be a maximum flow function with maximum cost

for N (γ∗), as described in Lemma 5.13. Then,

(1) If f saturates all edges (1, u1) with u1 ∈ MU1 and (u2,%) with u2 ∈ MU2, γ∗ is valid

for N (γ∗).
(2) Assume that ∃u1 ∈ MU1 such that (1, u1) is not saturated by f , and all edges (u2,%)

with u2 ∈ MU2 are saturated by f . Then, γ∗ is not valid. If there exists a valid γ,

γ > γ∗.

(3) Assume that all edges (1, u1) with u1 ∈MU1 are saturated by f , and ∃u2 ∈MU2 such

that (u2,%) is not saturated by f . Then, γ∗ is not valid. If there exists a valid γ, γ < γ∗.

38 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

(4) Assume that ∃u1 ∈MU1 and ∃u2 ∈MU2 such that (1, u1) and (u2,%) are not saturated

by f . Then, there does not exist a valid γ.

Proof. 1 : Follows directly from the definition. 2 : In this case, f(1, u1) < P(s1, u1) for
some u1 ∈ MU1. To saturate (1, u1), without un-saturating other edges from 1 to MU1,
we have to increase the capacities of edges leading to %, thus increase γ∗. 3 : Similar to the
previous case. 4 : Combining 2 and 3.

According to the above lemma, we can use the binary search method over the break-
points to check whether there exists a valid breakpoint for N (γ). Since there are at most
O(|V |) breakpoints, we invoke the maximum flow algorithm at most O(log |V |) times where
|V | is the number of vertices of N (γ).

Theorem 5.15. The algorithm SimRelw(M) runs in time O(m2n3) and in space O(n2).
If the fanout g is bounded by a constant, the time complexity is O(n5).

Proof. First, we consider a pair (s1, s2) out of the current relation Ri. Look at a single call
of Ws(M, s1, s2, Ri). By saving the current relation sets R and R−1 in a two dimensional
array, the conditions s ∈ R(s′) or s ∈ R−1(s′) can be checked in constant time. Hence,
line 8.1 takes time |post(s1)|. To construct the set reach(s) for a state s, BFS can be used,
which has complexity O(m). The size of the set reach(s) is bounded by n. Therefore, we
need O(|post(s1)|n) time at lines 8.3–8.5.

The algorithm computes all breakpoints of the network N (γ) (with respect to s1, s2

and R) using the breakpoint algorithm [18, p. 37–42]. Assume the set of vertices of N (γ)
is partitioned into subsets V1 and V2 similar to the network described in Section 4.1. The
number of edges of the network is at most |E| := |V1| |V2| − 1. Let |V | := |V1| + |V2|,
and, without loss of generality, we assume that |V1| ≤ |V2|. For our bipartite networks, the

time complexity [18, p. 42] for computing the breakpoints is O(|V1| |E| log(|V1|
2

|E| + 2)) which

can be simplified to O(|V1|
2 |V2|). Then, the binary search can be applied over all of the

breakpoints to check whether at least one breakpoint is valid, for which we need to solve
at most O(log |V |) many maximum flow problems. For our network N (γ), the best known

complexity5 of the maximum flow problem is O(|V |3 / log |V |) [14]. As indicated in the
proof of Lemma 4.4, the distance function is bounded by 4 |V1| for our bipartite network.
Applying this fact in the complexity analysis in [14], we get the corresponding complex-

ity for computing maximum flow for bipartite networks O(|V1| |V |
2 / log |V |). Hence, the

complexity for the O(log |V |)-invocations of the maximum flow algorithm is bounded by

O(|V1| |V |
2). As |V | ≤ 2 |V2|, the complexity is equal to O(|V1| |V2|

2). Summing over all
(s1, s2) over all Ri, we get the overall complexity of SimRelw(M):

k
∑

i=1

∑

(s1,s2)∈Ri

(|post (s1)|+ m + |post(s1)|n + |V1| |V2|
2) ≤ 4knm2 (5.1)

Recall that in the algorithm SimRelw(M), the number of iterations k is at most n2.
Hence, the time complexity amounts to O(m2n3). The space complexity is O(n2) because
of the representation of R. If the fanout is bounded by a constant g, we have m ≤ gn, and
get the complexity O(n5).

5For a network G = (V, E) with small |E|, there are more efficient algorithms in [15] with complexity

O(|V |2
p

|E|), and in [28] with complexity O(|E| |V | + |V |2+ǫ) where ǫ is an arbitrary constant. In our

bipartite networks, however, |E| is in the order of |V |2. Hence, these complexities become O(|V |3).

DECIDING PROBABILISTIC SIMULATIONS 39

5.1.4. An Improvement. The algorithm Ws(M, s1, s2, R) is dominated by the part in which
all breakpoints (O(n) many) must be computed, and a binary search is applied to the
breakpoints, with O(log n) many feasible flow problems. In this section we discuss how to
achieve an improved algorithm if the network N (γ) can be partitioned into sub-networks.

Let H denote the sub-relation R ∩ [(post (s1) ∪ {s1}) × (post (s2) ∪ {s2})], which is
the local fragment of the relation R. Now let A1, A2, . . . Ah enumerate the classes of the
equivalence relation (H ∪H−1)∗ generated by H, where h denotes the number of classes.
W. l. o. g., we assume in the following that Ah is the equivalence class containing s1 and s2,
i. e., s1, s2 ∈ Ah . The following lemma gives some properties of the sets Ai provided that
s1 wR s2:

Lemma 5.16. For (s1, s2) ∈ R, assume that there exists a state s′1 ∈ post (s1) such that

s′1 6∈ R−1(s2), and s′2 ∈ post(s2) such that s′2 6∈ R(s1). Let A1, . . . , Ah be the sets constructed

for (s1, s2) as above. If s1 wR s2, the following hold:

(1) P(s1, Ai) > 0 and P(s2, Ai) > 0 for all i < h,

(2) γi = K1/K2 for all i < h where γi = P(s1, Ai)/P(s2, Ai)

Proof. Since s1 wR s2, we let δi, Ui, Vi,∆ (for I = 1, 2) as described in Definition 2.21.
Because of states s′1 and s′2, we have K1 > 0,K2 > 0. Let post i(sj) = Ai ∩ post(sj) for
i = 1, . . . , h and j = 1, 2. We prove the first part. For i < h, the set Ai does not contain s1

nor s2, but only (some of) their successors, so it is impossible that both P(s1, Ai) = 0 and
P(s2, Ai) = 0. W. l. o. g., assume that P(s1, Ai) > 0. There exists t ∈ post i(s1) such that
P(s1, t) > 0. Obviously δ1(t) = 1, thus: 0 < P(s1, t) = (K1∆(t, U2))/δ1(t) = K1∆(t, U2)
which implies that ∃u2 ∈ Ai with ∆(t, u2) > 0. Hence, P(s2, u2) = K2∆(U1, u2) ≥
K2∆(t, u2) > 0. Now we prove the second part. It holds that:

P(s1, Ai) =
∑

ai∈Ai

P(s1, ai) =
∑

ai∈post i(s1)

P(s1, ai)
(∗)
=

∑

ai∈post i(s1)

K1∆(ai, U2)

δ1(ai)

(!)
= K1 ·

∑

ai∈post i(s1)

∆(ai, U2)
(†)
= K1 ·

∑

ai∈post i(s1)

∆(ai, Ai) = K1 ·
∑

ai∈Ai

∆(ai, Ai)

where (∗) follows from Condition 2b of Definition 2.21, (!) follows from the equation δ1(ai) =
1 for all ai ∈ post i(a1) with i < n, and (†) follows from the fact that if a ∈ post i(s1), then
∆(a, b) = 0 for b ∈ U2\post i(s2). In the same way, we get P(s2, Ai) = K2 ·

∑

ai∈Ai
∆(Ai, ai).

Therefore, γi = K1/K2 for 1 ≤ i < h.

For the case h > 1, the above lemma allows to check whether s1 wR s2 efficiently. For
this case we replace lines 8.6–8.7 of Ws by the sub-algorithm WsImproved in Algorithm 9.
The partition A1, . . . , Ah is constructed in line 9.1. Lines 9.2–9.10 follow directly from
Lemma 5.16: if γi 6= γj for some i, j < h, we conclude from Lemma 5.16 that s1 6wR s2.
Line 9.11 follows from the following lemma, which is the counterpart of Lemma 5.2:

Lemma 5.17. For (s1, s2) ∈ R, assume that there exists a state s′1 ∈ post (s1) such that

s′1 6∈ R−1(s2), and s′2 ∈ post(s2) such that s′2 6∈ R(s1). Assume that h > 1, and assume

WsImproved(M, s1, s2, R) reaches line 9.11. Then, s1 wR s2 iff γ1 is valid for N (γ1).

Proof. First, assume that s1 wR s2. According to Lemma 5.2, there exists a valid γ∗ for
N (γ∗). As in the proof of Lemma 5.2, γ∗ = K1/K2 is valid for N (γ∗). If Ws reaches
line 9.11, by Lemma 5.16, we have γ1 = K1/K2, hence, γ1 is valid for N (γ1). The other
direction follows directly from Lemma 5.2.

40 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

WsImproved(M, s1, s2, R)

9.1: Construct the partition A1, . . . , Ah (* Assume that h > 1 *)
9.2: for all i← 1, 2, . . . h − 1 do

9.3: if P(s1, Ai) = P(s2, Ai) = 0 then

9.4: raise error

9.5: else if P(s1, Ai) = 0 or P(s2, Ai) = 0 then

9.6: return false

9.7: else

9.8: γi ←
P(s1,Ai)
P(s2,Ai)

9.9: if γi 6= γj for some i, j < h then

9.10: return false

9.11: return (γ1 is valid for N (γ1))

Algorithm 9: Algorithm to check whether s1 wR s2 tailored to DTMCs.

Example 5.18. Consider the DTMC in Figure 8 together with the relation R = {(s1, s2),
(s1, v2), (v1, s2), (u1, u2), (o1, o2), (o1, v2), (v1, o3), (v1, v2), (o2, o1)}. We obtain the relation
H = R\{(o2, o1)}. We get two partitions A1 = {u1, u2} and A2 = {s1, s2, v1, v2, o1, o2, o3}.
In this case we have h = 2. Recall that MU1 = {u1, o1}, MU2 = {u2, o2, o3}, PV1 = {v1},
PV2 = {v2}. We have P(s1, A1) = 1

4 and P(s2, A1) = 1
8 . Hence, γ1 = P(s1, A1)/P(s2, A1) =

2. As we have shown in Example 5.4, 2 is valid for the network N (2). Hence, s1 wR s2.

Assume that (s1, s2) ∈ R1 such that h > 1 in the first iteration of SimRelw. We consider
the set A1 and let γ1 = P(s1, A1)/P(s2, A1). If A1 is not split in the next iteration, γ1 would
not change, and hence, we can reuse the network constructed in the last iteration. Assume
that in the next iteration A1 is split into two sets Aa

1 and Ab
1. There are two possibilities:

• either P(s1, A
a
1)/P(s2, A

b
1) = P(s1, A

a
1)/P(s2, A

b
1). This implies that both of them are

equal to γ1. If all Ai are split like A1, we just check whether γ1 is valid for N (γ1).
• or P(s1, A

a
1)/P(s2, A

b
1) 6= P(s1, A

a
1)/P(s2, A

b
1). This case is simple, we conclude s1 6wR s2

because of Lemma 5.16.

This indicates that once in the first iteration γ1 is determined for (s1, s2), either it does not
change throughout the iterations, or we conclude that s1 6wR s2 directly. The above analysis
can be generalised to the case in which A1 is split into more than two sets. As the network
N (γ1) is fixed, we can apply an algorithm similar to Smf, which solves the maximum flow
problems during all subsequent iterations using only one parametric maximum flow, as for
strong simulation.

The above analysis implies that if h > 1 for all (s1, s2) in the initial R1, we could even
establish the time bound O(m2n), the same as for strong simulation. Since in the worst
case it could be the case that h = 1 for all (s1, s2) ∈ R, the algorithm WsImproved does
not improve the worst case complexity.

Since the case that the network cannot be partitioned (h = 1) is the one that requires
most of our attention, we suggest a heuristic approach that can reduce the number of
occurrences of this case. We may choose to run some iterations incompletely (as long as
the last iteration is run completely). If iteration i is incomplete, we first check for each pair
(s1, s2) ∈ Ri whether the corresponding hi is greater than 1. If not, we skip the test and
just add (s1, s2) to Ri+1. The intuition is that in the next complete iteration i′ > i, for

DECIDING PROBABILISTIC SIMULATIONS 41

each such pair (s1, s2) we hope to get hi′ > 1 because some other elements of Ri have been
eliminated from it. We only perform the expensive computation if an incomplete iteration
does no longer refine the relation.

5.2. An Algorithm for CTMCs. Let M = (S,R, L) be a CTMC. We now discuss
how to handle CTMCs. Recall that in Definition 2.23, we have the rate condition 3′:
K1R(s1, S) ≤ K2R(s2, S). To determine wM, we simplify the algorithm for DTMCs. If
K1 > 0 and K2 = 0, s1 6wR s2 because of the rate condition. Hence, we do not need to
check the reachability condition, and lines 8.3–8.5 of the algorithm Ws(M, s1, s2, R) can
be skipped. For states s1, s2 and relation R, we use N (γ) to denote the network defined in
the embedded DTMC emb(M). To check the additional rate condition we use the following
lemma:

Lemma 5.19. Let s1 R s2. Assume that there exists s′1 ∈ post(s1) such that s′1 6∈ R−1(s2).
Then, s1 wR s2 in M iff there exists γ ≤ R(s2, S)/R(s1, S) such that γ is valid for N (γ).

Proof. Assume first s1 wR s2 in M. Let δi, Ui, Vi,Ki,∆ (for i = 1, 2) as described in
Definition 2.23. Obviously, s′1 must be in U1, implying that K1 > 0. Because of the rate
condition it holds that K1R(s1, S) ≤ K2R(s2, S), which implies that K2 > 0. It is sufficient
to show that γ := K1/K2 is valid for N (γ). Exactly as in the proof of Lemma 5.2 (the
only if direction), we can construct a valid flow f for N (γ). Thus, γ is valid for N (γ) and
γ ≤ R(s2, S)/R(s1, S).

Now we show the other direction. By assumption, γ is valid for N (γ). We may assume
that there exists a valid flow function f for N (γ). We define δi, Vi, Ui,Ki,∆ (for i = 1, 2) as
in the proof (the if direction) of Lemma 5.2. Recall that s′1 must be in U1, implying that
f(1, s′1) > 0. Thus, there must be a node s in N (γ) with f(s,%) > 0, which implies that
s ∈ U2. Thus we have K2 > 0. Using the proof (the if direction) of Lemma 5.2, it holds
that s1 wR s2 in emb(M), moreover, it holds that γ = K1/K2. By assumption it holds that
γ ≤ R(s2, S)/R(s1, S) which is exactly the rate condition.

To check the rate condition for the case h > 1, we replace line 9.11 of the algorithm
WsImproved by:

return (γ1 ≤ γ∗ ∧ γ1 is valid for N (γ1))

where γ∗ = R(s2, S)/R(s1, S) can be computed directly. In case h = 1, we replace line 8.7
of Ws by:

return (∃i ∈ {1, . . . , j}. bi ≤ γ∗ ∧ bi is valid for N (bi))

to check the rate condition. Or, equivalently, we can check whether the minimal valid
breakpoint γm is smaller than or equal to γ∗. The binary search algorithm introduced for
DTMCs can also be modified slightly to find the minimal valid breakpoint. The idea is
that, if we find a valid breakpoint, we first save it, and then continue the binary search on
the left side. If another breakpoint is valid, we save the smaller one. As the check for the
reachability condition disappears for CTMCs, we get better bound for sparse CTMCs:

Theorem 5.20. If the fanout g of M is bounded by a constant, the time complexity for

CTMC is O(n4).

Proof. In the proof of Theorem 5.15 we have shown that Ws has complexity O(|V1| |V2|
2).

As we do not need to check the reachability condition, the overall complexity of the al-

gorithm SimRelw(M) (see Inequality 5.1) is
∑

s1∈S

∑

s2∈S

∑l
i=1

(

|post(s1)|+ |V1| |V2|
2
)

42 L. ZHANG, H. HERMANNS, F. EISENBRAND, AND D. N. JANSEN

which is bounded by 2kgm2. Since k is bounded by n2, the time complexity is bounded by
4gm2n2. If g is a constant, we have m ≤ gn, hence, the time complexity is 4g3n4 ∈ O(n4).

6. Conclusion and Future Work

In this paper we have proposed efficient algorithms deciding simulation on Markov models
with complexity O(m2n). For sparse models where the fanout is bounded by a constant,
we achieve for strong simulation the complexity O(n2) and for weak simulation O(n4) on
CTMCs and O(n5) for DTMCs. We extended the algorithms for computing simulation
preorders to handle PAs with the complexity O(m2n) for strong simulation. For strong
probabilistic simulation, we have shown that the preorder can be determined by solving
LP problems. We also considered their continuous-time analogon, CPAs, and arrived at an
algorithm with same complexities as for PAs.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: theory, algorithms, and applications.
Prentice Hall, 1993.

[2] R. K. Ahuja, J. B. Orlin, C. Stein, and R. E. Tarjan. Improved algorithms for bipartite network flow.
SIAM J. Comput., 23(5):906–933, 1994.

[3] C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Deciding bisimilarity and similarity for proba-
bilistic processes. J. Comput. Syst. Sci., 60(1):187–231, 2000.

[4] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for continuous-time
Markov chains. IEEE Trans. Software Eng., 29(6):524–541, 2003.

[5] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes. In Computer Aided

Verification, volume 1254 of LNCS, pages 119–130. Springer, 1997.
[6] C. Baier, H. Hermanns, and J.-P. Katoen. Probabilistic weak simulation is decidable in polynomial

time. Information processing letters, 89(3):123–130, 2004.
[7] C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort. Efficient computation of time-bounded

reachability probabilities in uniform continuous-time Markov decision processes. Theor. Comput. Sci.,
345(1):2–26, 2005.

[8] C. Baier, J.-P. Katoen, H. Hermanns, and B. Haverkort. Simulation for continuous-time Markov chains.
In Concurrency, volume 2421 of LNCS, pages 338–354. Springer, 2002.

[9] C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf. Comparative branching-time semantics for Markov
chains. Information and computation, 200(2):149–214, 2005.

[10] B. Bloom and R. Paige. Transformational design and implementation of a new efficient solution to the
ready simulation problem. Sci. Comput. Program., 24(3):189–220, 1995.

[11] H. C. Bohnenkamp, P. van der Stok, H. Hermanns, and F. W. Vaandrager. Cost-optimization of the
IPv4 zeroconf protocol. In Dependable Systems and Networks, pages 531–540. IEEE Computer Society,
2003.

[12] S. Cattani and R. Segala. Decision algorithms for probabilistic bisimulation. In Concurrency, volume
2421 of LNCS, pages 371–385. Springer, 2002.

[13] K. Chatterjee, L. de Alfaro, R. Majumdar, and V. Raman. Algorithms for game metrics (full version).
In Foundations of Software Technology and Theoretical Computer Science, 2008.

[14] J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a maximum flow be computed in O(nm) time? In
Automata, languages and programming, volume 443 of LNCS, pages 235–248. Springer, 1990.

[15] J. Cheriyan and K. Mehlhorn. An analysis of the highest-level selection rule in the preflow-push max-
flow. Inf. Process. Lett., 69(5):239–242, 1999.

[16] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Transactions on

Programming Languages and Systems, 16(5):1512–1542, 1994.
[17] S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal State-Space Lumping in Markov Chains. Inf.

Process. Lett., 87(6):309–315, 2003.

DECIDING PROBABILISTIC SIMULATIONS 43

[18] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm and appli-
cations. SIAM J. Comput., 18(1):30–55, 1989.

[19] A. V. Goldberg. Recent developments in maximum flow algorithms. In Scandinavian Workshop on

Algorithm Theory, volume 1432 of LNCS, pages 1–10. Springer, 1998.
[20] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. J. ACM, 35(4):921–

940, 1988.
[21] C. Groß, H. Hermanns, and R. Pulungan. Does clock precision influence zigbee’s energy consumptions?

In International Conference on Principles of Distributed Systems, volume 4878 of LNCS, pages 174–188.
Springer, 2007.

[22] D. Gusfield and É. Tardos. A faster parametric minimum-cut algorithm. Algorithmica, 11(3):278–290,
1994.

[23] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on finite and infinite
graphs. In Foundations of Computer Science, pages 453–462. IEEE Computer Society, 1995.

[24] H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, volume 2428 of LNCS.
Springer, 2002.

[25] D. T. Huynh and L. Tian. On some equivalence relations for probabilistic processes. Fundam. Inform.,
17(3):211–234, 1992.

[26] B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic processes. In Logic in Com-

puter Science, pages 266–277. IEEE Computer Society, 1991.
[27] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):373–396,

1984.
[28] V. King, S. Rao, and R. E. Tarjan. A faster deterministic maximum flow algorithm. J. Algorithms,

17(3):447–474, 1994.
[29] R. Knast. Continuous-time probabilistic automata. Information and Control, 15(4):335–352, 1969.
[30] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation,

94(1):1–28, 1991.
[31] S. Mangold, Z. Zhong, G. R. Hiertz, and B. Walke. IEEE 802.11e/802.11k wireless LAN: spectrum

awareness for distributed resource sharing. Wireless Communications and Mobile Computing, 4(8):881–
902, 2004.

[32] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with generalized
stochastic petri nets. SIGMETRICS Performance Evaluation Review, 26(2):2, 1998.

[33] R. Milner. An algebraic definition of simulation between programs. In IJCAI, pages 481–489, 1971.
[34] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, 1980.
[35] D. Park. Concurrency and automata on infinite sequences. In Theor. Comput. Sci., pages 167–183, 1981.
[36] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New

York, 1994.
[37] W. H. Sanders and J. F. Meyer. Reduced base model construction methods for stochastic activity

networks. IEEE Journal on Selected Areas in Communications, 9(1):25–36, 1991.
[38] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
[39] R. Segala. Modeling and Verification of Randomized Distributed Realtime Systems. PhD thesis, MIT,

1995.
[40] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal of Com-

puting, 2(2):250–273, 1995.
[41] W. J. Steward. Introduction to the Numerical Solution of Markov Chains. Princeton University Press,

1994.
[42] N. Wolovick and S. Johr. A characterization of meaningful schedulers for continuous-time Markov

decision processes. In Formal Modeling and Analysis of Timed Systems, volume 4202 of LNCS, pages
352–367. Springer, 2006.

[43] L. Zhang. Decision Algorithms for Probabilistic Simulations. PhD thesis, Universität des Saarlandes,
2008.

[44] L. Zhang and H. Hermanns. Deciding simulations on probabilistic automata. In Automated Technology

for Verification and Analysis, volume 4762 of LNCS, pages 207–222. Springer, 2007.
[45] L. Zhang, H. Hermanns, F. Eisenbrand, and D. N. Jansen. Flow faster: Efficient decision algorithms

for probabilistic simulations. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 4424 of LNCS, pages 155–169. Springer, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://
reative
ommons.org/li
enses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Preliminaries
	2.1. Markov Models
	2.2. Strong and Weak Simulation Relations

	3. Maximum Flow Problems
	4. Algorithms for Deciding Strong Simulations
	4.1. Basic Algorithm to Decide Strong Simulation
	4.2. An Improved Algorithm for FPSs
	4.3. Strong Simulation for Probabilistic Automata
	4.4. Strong Probabilistic Simulation

	5. Algorithms for Deciding Weak Simulations
	5.1. An Algorithm for DTMCs
	5.2. An Algorithm for CTMCs

	6. Conclusion and Future Work
	References

