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Exercise 1 (3 points)

Consider the FPS D, which is given by
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a) Determine D/ ∼p.

b) For each C ∈ S/ ∼p, compute p′
C
(3), given the initial distribution p(0) = (1/5, 0, 2/15, 1/3, 1/6, 1/9, 1/18).

c) Compute the 3-step transient probability distribution in D/ ∼p, given the same initial distribution
as in b).

Solution

a) There are three equivalence classes in this FPS. C1 = {1, 4}, C2 = {2, 3} and C3 = {5, 6, 7}. They
form the quotient FPS under ∼p (D/ ∼p) as follows:



C1

C2 C3

1/4
1/2

11/8

1/2

b) In order to do the computation, we first make the FPS to be a DTMC by adding an extra state
S⊥. The 1-step transition probability matrix of D is then becomes

P =















0 0 0 0 0 0 1 0
1/8 0 1/4 0 0 1/6 1/3 1/8
0 0 1/4 1/8 1/4 1/4 0 1/8
0 0 0 0 1/3 2/3 0 0
0 0 0 0 0 1/2 0 1/2
0 0 0 0 1/6 1/6 1/6 1/2
0 0 0 0 0 1/4 1/4 1/2
0 0 0 0 0 0 0 1















The 3-step transition probability distribution of D is

P
3 =















0 0 0 0 1/24 5/48 5/48 3/4
0 0 1/64 1/128 95/1728 293/1728 19/216 85/128
0 0 1/64 1/128 5/64 11/64 1/16 85/128
0 0 0 0 5/108 7/54 2/27 3/4
0 0 0 0 1/72 11/144 5/144 7/8
0 0 0 0 11/432 49/864 37/864 7/8
0 0 0 0 5/288 37/576 25/576 7/8
0 0 0 0 0 0 0 1















The initial distribution becomes (1/5, 0, 2/15, 1/3, 1/6, 1/9, 1/18, 0).

p(3) = p(0) × P
3 = (0, 0, 1/480, 1/960, 3133/77760, 17039/155520, 10391/155520, 749/960).

So the 3-step transient probability to C1 is

p′
C1

(3) =
∑

s∈C1

p
s
(3)

= p
s1

(3) + p
s4

(3)

= 0 + 1/960

= 1/960

The 3-step transient probability to C2 is

p′
C2

(3) =
∑

s∈C2

p
s
(3)

= p
s2

(3) + p
s3

(3)

= 0 + 1/480

= 1/480



And the 3-step transient probability to C3 is

p′
C3

(3) =
∑

s∈C3

p
s
(3)

= p
s5

(3) + p
s6

(3) + p
s7

(3)

= 3133/77760 + 17039/155520 + 10391/155520

= 13/60

So the 3-step transient distribution computed from p(3) is (1/960, 1/480, 13/60, 749/960).

c) Again we extend the quotient FPS with a deadlock state s⊥ to form a DTMC. The initial distribution
of the quotient FPS is p′(0) = (8/15, 2/15, 1/3, 0).

In D/ ∼p, P
′ =







0 0 1 0
1/8 1/4 1/2 1/8
0 0 1/2 1/2
0 0 0 1







, and P
′3 =







0 0 1/4 3/4
1/128 1/64 5/16 85/128

0 0 1/8 7/8
0 0 0 1







.

The initial distribution is p′(0) = (8/15, 2/15, 1/3, 0).

The 3-step transient probability distribution in D/ ∼p is derived by

p′(0) × P
′3 = (1/960, 1/480, 13/60, 749/960),

which is equivalent to the result in b).
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Exercise 2 (5 points)

Let D = (S,P) be a DTMC and T ⊆ S,L ⊆ S. For s ∈ S, let

Prob(s, L, T ) = Pr{X(i) ∈ T for some i ≥ 0 and X(j) ∈ L for all 0 ≤ j < i | X(0) = s}

a) Give a recurrent equation for Prob(s, L, T ).

b) Now let L ∈ 2S/∼p and T ∈ S/ ∼p. Show that s ∼p s′ implies Prob(s, L, T ) = Prob(s′, L, T ).

Solution

a)

Prob(s, L, T ) =







1 if s ∈ T
∑

s′′ P(s, s′′) · Prob(s′′, L, T ) if s ∈ L, s /∈ T
0 o.w.

b) Distinguish the following cases.

(i) s ∈ T . Trivial, as s ∼p s′ and T ∈ S/ ∼p implies s′ ∈ T . So Prob(s, L, T ) = 1 = Prob(s′, L, T ).

(ii) s /∈ L, s /∈ T . Then also s′ /∈ L, s′ /∈ T and Prob(s, L, T ) = 0 = Prob(s′, L, T ).

(iii) s ∈ L, s /∈ T . Then the vector (Prob(s, L, T ))s∈(S∩L)\T is the smallest solution of the linear
equation system of

xs =
∑

s′′∈(S∩L)\T

P(s, s′′) · xs′′ (∗)

Now consider the smallest solution (xB)B∈S/∼p,B⊆(S∩L)\T of the following linear equation
system:

xB =
∑

C∈S/∼p,C⊆(S∩L)\T

P(sB, C) · xC



where sB ∈ B.

Now show that xs = xB for any s ∈ B ∈ S/ ∼p and B ⊆ (S ∩L) \ T . This is done by showing
that vector (ys)s∈(S∩L)\T is a solution to (∗) where ys = xB if s ∈ B and B ∈ S/ ∼p and
B ⊆ (S ∩ L) \ T . This goes as follows. Substitute ys′′ into (∗) for xs′′ . This yields:

xs =
∑

s′′∈(S∩L)\T P(s, s′′) · ys′′

⇐⇒ (∗ (S ∩ L) \ T can be partitioned into equivalence classes under ∼p ∗)

xs =
∑

s′′∈C,C∈S/∼p,C⊆(S∩L)\T P(s, s′′) · ys′′

⇐⇒ (∗ ys′′ = xC for s′′ ∈ C,C ∈ S/ ∼p, C ⊆ (S ∩ L) \ T ∗)

xs =
∑

s′′∈C,C∈S/∼p,C⊆(S∩L)\T P(s, s′′) · xC

⇐⇒ xs =
∑

C∈S/∼p,C⊆(S∩L)\T

∑

s′′∈C P(s, s′′) · xC

⇐⇒ (∗ as xC is constant for all s′′ ∈ C ∗)

xs =
∑

C∈S/∼p,C⊆(S∩L)\T (
∑

s′′∈C

P(s, s′′))

︸ ︷︷ ︸

P (s,C)

·xC

⇐⇒ xs =
∑

C∈S/∼p,C⊆(S∩L)\T

P(s,C) · xC

︸ ︷︷ ︸

xB

So ys = xB = xs = Prob(s, L, T ) for any s ∈ B,B/ ∼p. �

Remark Why the vector (Prob(s, L, T ))s∈(S∩L)\T is the smallest but not the unique solution to (∗)?

Consider the following DTMC where s1, s2 ∈ L:

s1 s2

1

1

In this setting, (∗) is the system of linear equations composed by xs1
= xs2

and xs2
= xs1

. Obviously, it
has more than 1 solution, where the smallest one xs1

= xs2
= 0 is the probability we are looking for.
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Exercise 3 (2 points)

Given two FPSs Dl and Dr as follows:



g

f

a

b

e

c d
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a′1

b′

e′1 g′

f ′
2

f ′
3

f ′
1

a′2

c′1

d′

e′2

c′2

1/3

1/8

1/5

1/4

1/5

2/5

2/5

2/15

1/15

1/4

1/4

1/5 1/41/2

2/5

Do we have:

a) (Dl, a) ⊑p (Dr, a
′
1)?

b) (Dr, a
′
1) ⊑p (Dl, a)?

Solution

a) No. Because there does not exist a strong probabilistic simulation which incorperates (a, a′1). Since
the sum of the probabilities of all the outgoing transitions from a is 1/4+ 1/6+ 1/3+ 1/5 = 19/20,
while the sum from a′1 is 1/5, which is less than 19/20. It means that there does not exist a weight
function over P(a, ·) and P(a′1, ·). It also means that a can do more than a′1, so that a cannot be
simulated by a′1.

b) Yes. R = {(a′1, a), (a′2, a), (b′, b), (c′1, c), (c
′
2, c), (d

′, d), (e′1, e), (e
′
2, e), (f

′
1, f), (f ′

2, f), (f ′
3, f), (g′, g)} is a

strong probabilistic bisimulation. We illustrate some of the weight functions, the rest is similar.

• To establish the weight function for P(a′2, ·) and P(a, ·):

Since P(a′2, b
′) = 1/8,P(a′2, c

′
1) = 1/4,P(a′2, f

′
1) = 2/15 and P(a′2, f

′
2) = 1/15, P(a, a) = 1/4,

P(a, b) = 1/6,P(a, c) = 1/3 and P(a, f) = 1/5, the weight function ∆:

∆(b′, b) = 1/8, ∆(c′1, c) = 1/4, ∆(f ′
1, f) = 2/15, ∆(f ′

2, f) = 1/15,

∆(⊥, a) = 1/4, ∆(⊥, b) = 1/24, ∆(⊥, c) = 1/12, ∆(⊥,⊥) = 1/20

• To establish the weight function for P(e′1, ·) and P(e, ·):

Since P(e′1, e
′
2) = 2/5, P(e, e) = 3/5, P(e, f) = 1/5, the weight function ∆′:

∆′(e′2, e) = 2/5, ∆′(⊥, f) = 1/5, ∆′(⊥, e) = 1/5, ∆′(⊥,⊥) = 1/5

• To establish the weight function for P(f ′
1, ·) and P(f, ·):

Since P(f ′
1, f

′
2) = 1/4, P(f ′

1, f
′
3) = 1/4, P(f, g) = 1/3, P(f, f) = 1/2, P(f, g) = 1/3, the weight

function ∆′′:

∆′′(f ′
1, f) = 1/4, ∆′′(f ′

1, f) = 1/4, ∆′′(⊥, g) = 1/3, ∆′′(⊥,⊥) = 1/6

Remark: For the algorithms for deciding strong simulation relation in a DTMC, please refer to Section
4 in the paper “Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations” by Lijun Zhang
et al.
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