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Overview Theme of the course

© Introduction

The theory of modelling and verification

of probabilistic systems
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© gy = . .
LEZZd Probabilities help lllustrative example: Security

Security: Crowds protocol [Reiter & Rubin, 1998]

> When analysing system performance and dependability » A protocol for anonymous web browsing (variants: mCrowds,

> to quantify arrivals, waiting times, time between failure, QoS, ... BT-Crowds)
» Hide user’'s communication by random routing within a crowd
» When modelling unreliable and unpredictable system behavior » sender selects a crowd member randomly using a uniform distribution
> to quantify message loss, processor failure » selected router flips a biased coin:
» to quantify unpredictable delays, express soft deadlines, ... » with probability 1 — p: direct delivery to final destination

> otherwise: select a next router randomly (uniformly)

» When building protocols for networked embedded systems » once a routing path has been established, use it until crowd changes

> randomized algorithms » Rebuild routing paths on crowd changes
» Property: Crowds protocol ensures “probable innocence™:
> probability real sender is discovered < 3 if N > p_P; (c+1)
2

» When problems are undecidable deterministically
» where N is crowd'’s size and ¢ is number of corrupt crowd members

> repeated reachability of lossy channel systems, ...
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lllustrative example: Leader election Properties of leader election

Distributed system: Leader election [1tai & Rodeh, 1990]

Almost surely eventually a leader will be elected
» A round-based protocol in a synchronous ring of N > 2 nodes
> the nodes proceed in a lock-step fashion P_; (Oleader elected)
> each slot = 1 message is read + 1 state change + 1 message is sent
= this synchronous computation yields a discrete-time Markov chain
Each round starts by each node choosing a uniform id € {1,..., K} With probability at least 0.8, a leader is elected within steps
Nodes pass their selected id around the ring

>
>
» If there is a unique id, the node with the maximum unique id is leader Psos ((}gk/eader e/ected)
>

If not, start another round and try again ...
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Probability to elect a leader within L rounds

Probability

Probability leader elected within L rounds (K=2)
* +H
£ HHH
S s P
=
0 ) 20 El &0 <
L

Probability leader elected within Lrounds (K=4)

Peq (<><(N+1)'L leader elected)

Expected time

Expected time to elect aleader

——n=2
[ —
——N=4

=5

——N=6

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Probability Theory Refresher

Introduction

What is probabilistic model checking?

(Eééip1(0d§ffé§§i>

requirements

property

specification

Joost-Pieter Katoen

inaccuracy

up to 107 states

(s

state 1
state 2
state 3
state 4

0678

05797
0.1523
02123

memory

o @

Modeling and Verification of Probabilistic Systems 10/39
Probability Theory Refresher Introduction Probability Theory Refresher Course details

Probabilistic models

Nondeterminism
no

Nondeterminism
yes

Discrete time

discrete-time
Markov chain (DTMC)

Markov decision
process (MDP)

Continuous time

CT™MC

interactive MC
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Course topics Course topics

A refrehser What are ?

> - i - AR R
measurable spaces, o-algebra, measurable functions s walaliy prabalsies, e, 6@

» geometric, exponential and binomial distributions e e

>
>

» Markov and memoryless property > linear temporal logic
>

limiting and stationary distributions sielbelkt e comsuiEtion Tae leme

— =
What are probabilistic ? How to check e

> di -ti i . . . .
clisereiie i ko el » graph analysis, solving systems of linear equations

> i -ti i e . . .
continuous-time Markov chains » deterministic Rabin automata, product construction

> extensions of these models with rewards » linear programming, integral equations

» Markov decision processes (or: probabilistic automata) ~ wilsrlEsifen, Velicre dnewel cquedons

» interactive Markov chains
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Course topics Course material

How to make probabilistic models smaller?

Ch. 10, Principles of Model Checking

CHRISTEL BAIER

» Equivalences and pre-orders
» Which properties are preserved?

» Minimisation algorithms TU Dresden, Germany

How to probabilistic models? ORI B2 G Rel
RWTH Aachen University, Germany, and

Principles of Model Checking University of Twente, the Netherlands
> Compositiona| mode|ing and minimisation Christel Baier and Joost-Pieter Katoen

» parallel composition and hiding
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Other literature

» H.C. Tijms: A First Course in Stochastic Models. Wiley, 2003.

» H. Hermanns: Interactive Markov Chains: The Quest for Quantified
Quality. LNCS 2428, Springer-Verlag, 2002.

» E. Brinksma, H. Hermanns, J.-P. Katoen: Lectures on Formal
Methods and Performance Analysis. LNCS 2090, Springer 2001.

» M. Stoelinga. An Introduction to Probabilistic Automata. Bull. of the
ETACS, 2002.

» M. Kwiatkowska et al.. Stochastic Model Checking. LNCS 4486,
Springer-Verlag, 2007.
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Exercises and exam

Exercise classes

» Wed 13:30 - 15:00 in AH3 (start: April 20)

» Instructors: Friedrich Gretz and Falak Sher

Weekly exercise series

» Intended for groups of 2 students
» New series: every Wed on course webpage (start: April 13)
» Solutions: Wed (before 13:30) one week later

» August 12, 2011 and unknown date (written exam)

» participation if > 50% of all exercise points are gathered

Lectures

Mon 12:30 - 14:00 (AH3), Tue 08:15-09:45 (AH2)
April 11, 12, 18, 26

May 2, 3, 9, 16, 17, 23, 30, 31

June 6, 7, 20, 27, 28

July 4,5, 11, 12

Check regularly course webpage for possible “no shows”

» Lecture slides (with gaps) are made available on webpage

vV VvV vV VY

» Copies of the books are available in the CS library

moves.rwth-aachen.de/i2/mvpsi1
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Course embedding

Aim of the course

It's about the foundations of verifying and modeling probabilistic systems

» Automata and language theory
» Algorithms and data structures
» Probability theory

» Introduction to model checking

Some related courses

» Advanced Model Checking (Katoen)
» Modeling and Verification of Hybrid Systems (Abraham)
» Applied Automata Theory (Thomas)
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Questions?
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Probability theory is simple, isn’t it?

In no other branch of mathematics
is it so easy to make mistakes
as in probability theory

Henk Tijms, “Understanding Probability” (2004)
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Probability Theory Refresher Probability refresher

Overview

© Probability refresher
@ Random variables
@ Probability spaces
@ Random variables
@ Stochastic processes
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Measurable space

Sample space

A sample space €2 of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment.

A o-algebra is a pair (Q, F) with Q # @ and F C 2% a collection of subsets of
sample space €2 such that:

1. Qe F
2. Ae F = Q—-AcF complement
3. (Viz0. A eF) = UsgAeF countable union

The elements in F of a o-algebra (R, F) are called events.
The pair (2, F) is called a measurable space.

|
Let Q be a set. F ={@,Q} yields the smallest o-algebra; F = 29 yields the
largest one.
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Probabilities
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Some lemmas

Properties of probabilities

For measurable events A, B and A; and probability measure Pr:
» Pr(A)=1—-Pr(Q2—A)

» Pr(AU B) = Pr(A) + Pr(B) — Pr(An B)
» Pr(AnB) =Pr(A| B) - Pr(B)
» A C B implies Pr(A) < Pr(B)

> Pr(Up>14n) = 2,51 Pr(A;) provided A, are pairwise disjoint

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Probability space

Probability space

A probability space P is a structure (Q, F, Pr) with:
> (Q,F) is a o-algebra, and
» Pr:F — [0,1] is a probability measure, i.e.:
1. Pr() =1, i.e,, Q is the certain event

Pr (U A,-) =S Z Pr(A;) for any A; € F with A;NA; = @ for i/,
i€l icl
where { A; }ic/ is finite or countably infinite.

The elements in F of a probability space (2, F, Pr) are called measurable
events.
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Discrete probability space

Discrete probability space

Pr is a discrete probability measure on (2, F) if
» there is a countable set A € Q such that for a € A:;

{a}eF and ZPr({a}):

acA

> e.g., a probability measure on (Q,29)

(Q, F, Pr) is then called a discrete probability space; otherwise, it is a
continuous probability space.

Example discrete probability space: throwing a die, number of customers in a

shop, .. ..

Joost- Pleter Katoen Modellng and Venflcatlon of Probablllstlc Systems
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Random variable

Measurable function
Let (2, F) and (', ') be measurable spaces. Function f : Q@ — Q' is a
measurable function if

flA)={a|f(a)cA}eF forall Ac F

Random variable

Measurable function X : Q — IR is a random variable.

The probability distribution of X is Prx = ProX ! where Pris a
probability measure on (2, F).
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Distribution function

Distribution function

The distribution function Fx of random variable X is defined by:

Fx(d) = I;r((—oo, d)=Pr({ae Q| X(a)<d}) forreald
{Xx<d}

» Fx is monotonic and right-continuous
» 0< Fx(d) <1

> limg—_oo Fx(d) =0 and

> limy_ Fx(d) = 1.

Probability Theory Refresher Probability refresher

Example: rolling a pair of fair dice
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Discrete / continuous random variables

Distribution function

The distribution function Fx of random variable X is defined for d € IR by:
Fx(d) = Ii(r(X € (—o0,d])=Pr({ac Q| X(a)<d})

In the continuous case, Fx is called the cumulative density function.

Distribution function

» For discrete random variable X, Fx can be written as:

Fx(d) =Y I:)’<r(X:di)
di<d

» For continuous random variable X, Fx can be written as:

d
Fx(d) = / Sl cn it # e sty e
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Expectation and variance

Expectation

The expectation of discrete r.v. X with range / is defined by

EIX] = ) x Pr(X=x))

x;i€l
provided that this series converges absolutely, i.e., the sum must remain
finite on replacing all x;'s with their absolute values.

The expectation is the weighted average of all possible values that X can
take on.

Variance

The variance of discrete r.v. X is given by VarlX] = E[X?] — (E[X])>.
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Example stochastic processes

Waiting times of customers in a shop
Interarrival times of jobs at a production lines
Service times of a sequence of jobs

Files sizes that are downloaded via the Internet

vV vV.v v Y

Number of occupied channels in a wireless network
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Stochastic process

Stochastic process

A stochastic process is a collection of random variables { X; |t € T }.
» casual notation X(t) instead of X;
» with all X; defined on probability space P
» parameter t (mostly interpreted as “time") takes values in the set T

X; is a random variable whose values are called states. The set of all
possible values of X; is the state space of the stochastic process.

|

Parameter space T

State space Discrete \ Continuous

Discrete # jobs at k-th job departure # jobs at time t

Continuous waiting time of k-th job total service time at time t
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Bernouilli process

Bernouilli random variable

Random variable X on state space { 0,1} defined by:
Pr(X=1)=p and Pr(X=0)=1-p

is a Bernouilli random variable.
The mass function is given by f(k; p) = p*-(1—p)!=* for k € {0,1}.
Expectation E[X] = p; variance Var{X] = E[X?] — (E[X])? = p-(1-p).

Bernouilli process

A Bernouilli process is a sequence of independent and identically
distributed Bernouilli random variables X, Xo, .. ..
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Binomial process Memoryless property

Let X1, X, ... be a Bernouilli process. The binomial process S, is defined
by So =0 and S, = Y71 X;. The probability distribution of “counting sy

process” S, is given by: 1. For any random variable X with a geometric distribution:
P{X=k+m|X>m} = Pr{X =k} forany meT, k>1

Pr{S,=k}= (Z) pk-(1—p)" K foro<k<n
This is called the memoryless property, and X is a memoryless r.v..

Moments: E[S,] = n-p and Var[S,] = n-p-(1—p). 2. Any discrete random variable which is memoryless is geometrically
distributed.

Let r.v. T; be the number of steps between increments of counting process Proof:

Sp. Then: On the black board.

P{Ti=k}=QQ-p)tp fork>1

This is a geometric distribution. We have E[T;] = % and Var[T;] = %23.

Intuition: Geometric distribution = number of Bernoulli trials needed for one success.
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Joint distribution function

Joint distribution function

The joint distribution function of stochastic process X = { X; |t € T } is
given for n, t1,...,t, € T and dy,...,d, by:

Fx(dl,...,d,,;tl,...,t,,) = Pr{X(tl) < dl,...,X(t,,) < d,,}

The shape of Fx depends on the stochastic dependency between X(t;).

Stochastic independence

Random variables X; on probability space P are independent if:

Fx(dl,...,dn;tl,...,tn) = HFx(d,';t,') = HPI’{X(t,')gd,'}.
i=1 i=1

|
A renewal process is a discrete-time stochastic process where X(t1), X(t2), ... are

independent, identically distributed, non-negative random variables.
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