

Modeling and Verification of Probabilistic Systems

Lecture 1: Probability Theory Refresher

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://www-i2.informatik.rwth-aachen.de/i2/mvps11/>

April 11, 2011

Overview

1 Introduction

2 Course details

3 Probability refresher

- Random variables
- Probability spaces
- Random variables
- Stochastic processes

Overview

1 Introduction

2 Course details

3 Probability refresher

- Random variables
- Probability spaces
- Random variables
- Stochastic processes

Theme of the course

The theory of modelling and verification
of probabilistic systems

Probabilities help

- ▶ When analysing system performance and dependability
 - ▶ to quantify arrivals, waiting times, time between failure, QoS, ...
- ▶ When modelling unreliable and unpredictable system behavior
 - ▶ to quantify message loss, processor failure
 - ▶ to quantify unpredictable delays, express soft deadlines, ...
- ▶ When building protocols for networked embedded systems
 - ▶ randomized algorithms
- ▶ When problems are undecidable deterministically
 - ▶ repeated reachability of lossy channel systems, ...

Illustrative example: Leader election

Distributed system: Leader election

[Itai & Rodeh, 1990]

- ▶ A round-based protocol in a synchronous ring of $N > 2$ nodes
 - ▶ the nodes proceed in a **lock-step** fashion
 - ▶ each slot = 1 message is read + 1 state change + 1 message is sent
 - ⇒ this synchronous computation yields a discrete-time Markov chain
- ▶ Each round starts by each node choosing a uniform id $\in \{1, \dots, K\}$
- ▶ Nodes pass their selected id around the ring
- ▶ If there is a unique id, the node with the **maximum** unique id is leader
- ▶ If not, start another round and try again ...

Illustrative example: Security

Security: Crowds protocol

[Reiter & Rubin, 1998]

- ▶ A protocol for **anonymous web browsing** (variants: mCrowds, BT-Crowds)
- ▶ Hide user's communication by **random routing** within a crowd
 - ▶ sender selects a crowd member randomly using a uniform distribution
 - ▶ selected router flips a biased coin:
 - ▶ with probability $1 - p$: direct delivery to final destination
 - ▶ otherwise: select a next router randomly (uniformly)
 - ▶ once a routing path has been established, use it until crowd changes
- ▶ Rebuild routing paths on crowd changes
- ▶ Property: Crowds protocol ensures "probable innocence":
 - ▶ probability real sender is discovered $< \frac{1}{2}$ if $N \geq \frac{p}{p-1} \cdot (c+1)$
 - ▶ where N is crowd's size and c is number of corrupt crowd members

Properties of leader election

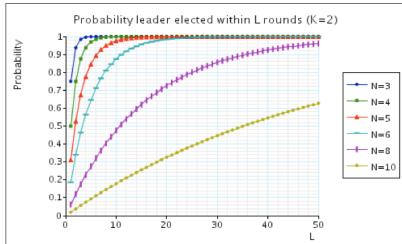
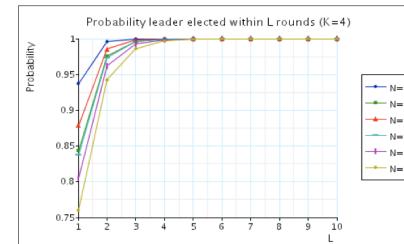
Almost surely eventually a leader will be elected

$$\mathbb{P}_{=1} (\Diamond \text{leader elected})$$

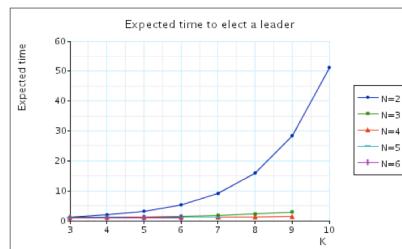
With probability at least 0.8, a leader is elected within k steps

$$\mathbb{P}_{\geq 0.8} (\Diamond^{\leq k} \text{leader elected})$$

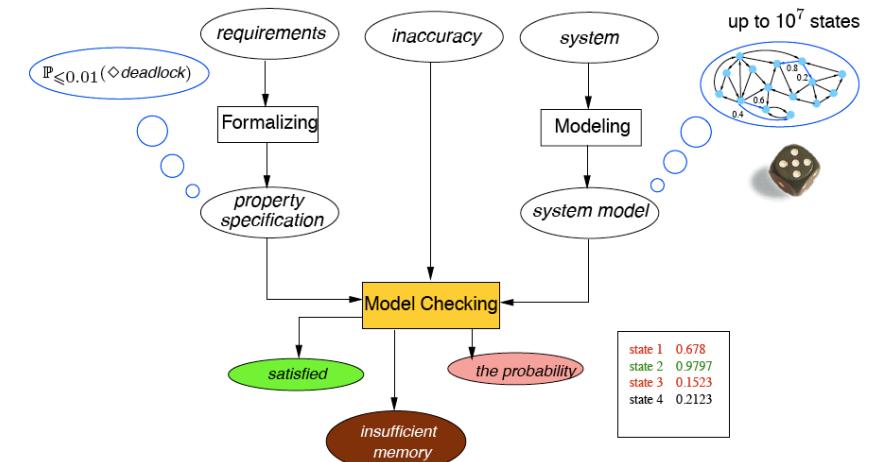
Probability to elect a leader within L rounds



$$\mathbb{P}_{\leq q} (\Diamond^{\leq (N+1) \cdot L} \text{leader elected})$$



What is probabilistic model checking?



Probabilistic models

	Nondeterminism no	Nondeterminism yes
Discrete time	discrete-time Markov chain (DTMC)	Markov decision process (MDP)
Continuous time	CTMC	interactive MC

1 Introduction

2 Course details

3 Probability refresher

- Random variables
- Probability spaces
- Random variables
- Stochastic processes

Course topics

A probability theory refresher

- ▶ measurable spaces, σ -algebra, measurable functions
- ▶ geometric, exponential and binomial distributions
- ▶ Markov and memoryless property
- ▶ limiting and stationary distributions

What are probabilistic models?

- ▶ discrete-time Markov chains
- ▶ continuous-time Markov chains
- ▶ extensions of these models with rewards
- ▶ Markov decision processes (or: probabilistic automata)
- ▶ interactive Markov chains

Course topics

How to make probabilistic models smaller?

- ▶ Equivalences and pre-orders
- ▶ Which properties are preserved?
- ▶ Minimisation algorithms

How to model probabilistic models?

- ▶ parallel composition and hiding
- ▶ compositional modeling and minimisation

Course topics

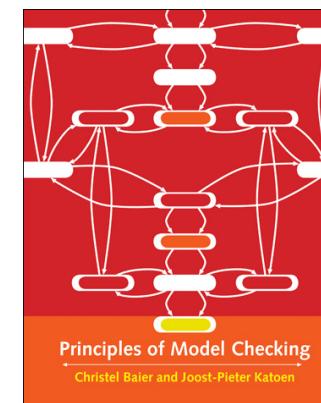
What are properties?

- ▶ reachability probabilities, i.e., $\Diamond G$
- ▶ long-run properties
- ▶ linear temporal logic
- ▶ probabilistic computation tree logic

How to check temporal logic properties?

- ▶ graph analysis, solving systems of linear equations
- ▶ deterministic Rabin automata, product construction
- ▶ linear programming, integral equations
- ▶ uniformisation, Volterra integral equations

Course material



Ch. 10, Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany, and
University of Twente, the Netherlands

Other literature

- ▶ H.C. Tijms: **A First Course in Stochastic Models**. Wiley, 2003.
- ▶ H. Hermanns: **Interactive Markov Chains: The Quest for Quantified Quality**. LNCS 2428, Springer-Verlag, 2002.
- ▶ E. Brinksma, H. Hermanns, J.-P. Katoen: **Lectures on Formal Methods and Performance Analysis**. LNCS 2090, Springer 2001.
- ▶ M. Stoelinga. **An Introduction to Probabilistic Automata**. Bull. of the ETACS, 2002.
- ▶ M. Kwiatkowska *et al.*. **Stochastic Model Checking**. LNCS 4486, Springer-Verlag, 2007.

Exercises and exam

Exercise classes

- ▶ Wed 13:30 - 15:00 in AH3 (start: April 20)
- ▶ Instructors: Friedrich Gretz and Falak Sher

Weekly exercise series

- ▶ Intended for groups of 2 students
- ▶ New series: every Wed on course webpage (start: April 13)
- ▶ Solutions: Wed (before 13:30) **one week** later

Exam:

- ▶ **August 12, 2011** and **unknown date** (written exam)
- ▶ participation if $\geq 50\%$ of all exercise points are gathered

Lectures

Lecture

- ▶ Mon 12:30 - 14:00 (AH3), Tue 08:15-09:45 (AH2)
- ▶ April 11, 12, 18, 26
- ▶ May 2, 3, 9, 16, 17, 23, 30, 31
- ▶ June 6, 7, 20, 27, 28
- ▶ July 4, 5, 11, 12
- ▶ Check regularly course webpage for possible “no shows”

Material

- ▶ Lecture slides (with gaps) are made available on webpage
- ▶ Copies of the books are available in the CS library

Website

moves.rwth-aachen.de/i2/mvps11

Course embedding

Aim of the course

It's about the **foundations** of verifying and modeling probabilistic systems

Prerequisites

- ▶ Automata and language theory
- ▶ Algorithms and data structures
- ▶ Probability theory
- ▶ Introduction to model checking

Some related courses

- ▶ Advanced Model Checking (Katoen)
- ▶ Modeling and Verification of Hybrid Systems (Abráhám)
- ▶ Applied Automata Theory (Thomas)

Questions?

Probability theory is simple, isn't it?

*In no other branch of mathematics
is it so easy to make mistakes
as in probability theory*

Henk Tijms, "Understanding Probability" (2004)

Overview

1 Introduction

2 Course details

3 Probability refresher

- Random variables
- Probability spaces
- Random variables
- Stochastic processes

Measurable space

Sample space

A *sample space* Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A *σ -algebra* is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^\Omega$ a collection of subsets of sample space Ω such that:

1. $\Omega \in \mathcal{F}$
2. $A \in \mathcal{F} \Rightarrow \Omega - A \in \mathcal{F}$ complement
3. $(\forall i \geq 0. A_i \in \mathcal{F}) \Rightarrow \bigcup_{i \geq 0} A_i \in \mathcal{F}$ countable union

The elements in \mathcal{F} of a σ -algebra (Ω, \mathcal{F}) are called *events*.

The pair (Ω, \mathcal{F}) is called a *measurable space*.

Let Ω be a set. $\mathcal{F} = \{\emptyset, \Omega\}$ yields the smallest σ -algebra; $\mathcal{F} = 2^\Omega$ yields the largest one.

Probabilities

Some lemmas

Properties of probabilities

For measurable events A , B and A_i and probability measure \Pr :

- ▶ $\Pr(A) = 1 - \Pr(\Omega - A)$
- ▶ $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$
- ▶ $\Pr(A \cap B) = \Pr(A | B) \cdot \Pr(B)$
- ▶ $A \subseteq B$ implies $\Pr(A) \leq \Pr(B)$
- ▶ $\Pr(\bigcup_{n \geq 1} A_n) = \sum_{n \geq 1} \Pr(A_n)$ provided A_n are pairwise disjoint

Probability space

Probability space

A **probability space** \mathcal{P} is a structure $(\Omega, \mathcal{F}, \Pr)$ with:

- ▶ (Ω, \mathcal{F}) is a σ -algebra, and
- ▶ $\Pr : \mathcal{F} \rightarrow [0, 1]$ is a **probability measure**, i.e.:
 1. $\Pr(\Omega) = 1$, i.e., Ω is the certain event
 2. $\Pr\left(\bigcup_{i \in I} A_i\right) = \sum_{i \in I} \Pr(A_i)$ for any $A_i \in \mathcal{F}$ with $A_i \cap A_j = \emptyset$ for $i \neq j$,
where $\{A_i\}_{i \in I}$ is finite or countably infinite.

The elements in \mathcal{F} of a probability space $(\Omega, \mathcal{F}, \Pr)$ are called **measurable** events.

Discrete probability space

Discrete probability space

\Pr is a **discrete** probability measure on (Ω, \mathcal{F}) if

- ▶ there is a countable set $A \in \Omega$ such that for $a \in A$:

$$\{a\} \in \mathcal{F} \quad \text{and} \quad \sum_{a \in A} \Pr(\{a\}) = 1$$

- ▶ e.g., a probability measure on $(\Omega, 2^\Omega)$

$(\Omega, \mathcal{F}, \Pr)$ is then called a **discrete** probability space; otherwise, it is a **continuous probability** space.

Example

Example **discrete** probability space: throwing a die, number of customers in a shop,

Example

Random variable

Measurable function

Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be measurable spaces. Function $f : \Omega \rightarrow \Omega'$ is a **measurable function** if

$$f^{-1}(A) = \{a \mid f(a) \in A\} \in \mathcal{F} \quad \text{for all } A \in \mathcal{F}'$$

Random variable

Measurable function $X : \Omega \rightarrow \mathbb{R}$ is a **random variable**.

The **probability distribution** of X is $\Pr_X = \Pr \circ X^{-1}$ where \Pr is a probability measure on (Ω, \mathcal{F}) .

Example: rolling a pair of fair dice

Distribution function

Distribution function

The **distribution function** F_X of random variable X is defined by:

$$F_X(d) = \Pr_X((-\infty, d]) = \Pr_X(\underbrace{\{a \in \Omega \mid X(a) \leq d\}}_{\{X \leq d\}}) \quad \text{for real } d$$

Properties

- ▶ F_X is monotonic and right-continuous
- ▶ $0 \leq F_X(d) \leq 1$
- ▶ $\lim_{d \rightarrow -\infty} F_X(d) = 0$ and
- ▶ $\lim_{d \rightarrow \infty} F_X(d) = 1$.

Discrete / continuous random variables

Distribution function

The **distribution function** F_X of random variable X is defined for $d \in \mathbb{R}$ by:

$$F_X(d) = \Pr_X(X \in (-\infty, d]) = \Pr_X(\{a \in \Omega \mid X(a) \leq d\})$$

In the continuous case, F_X is called the **cumulative density function**.

Distribution function

- ▶ For **discrete** random variable X , F_X can be written as:

$$F_X(d) = \sum_{d_i \leq d} \Pr_X(X=d_i)$$

- ▶ For **continuous** random variable X , F_X can be written as:

$$F_X(d) = \int_{-\infty}^d f_X(u) du \quad \text{with } f \text{ the density function}$$

Expectation and variance

Expectation

The *expectation* of discrete r.v. X with range I is defined by

$$E[X] = \sum_{x_i \in I} x_i \cdot \Pr_X(X=x_i)$$

provided that this series converges absolutely, i.e., the sum must remain finite on replacing all x_i 's with their absolute values.

The expectation is the weighted average of all possible values that X can take on.

Variance

The *variance* of discrete r.v. X is given by $\text{Var}[X] = E[X^2] - (E[X])^2$.

Example stochastic processes

- ▶ Waiting times of customers in a shop
- ▶ Interarrival times of jobs at a production lines
- ▶ Service times of a sequence of jobs
- ▶ File sizes that are downloaded via the Internet
- ▶ Number of occupied channels in a wireless network
- ▶

Stochastic process

Stochastic process

A *stochastic process* is a collection of random variables $\{X_t \mid t \in T\}$.

- ▶ casual notation $X(t)$ instead of X_t
- ▶ with all X_t defined on probability space \mathcal{P}
- ▶ parameter t (mostly interpreted as "time") takes values in the set T

X_t is a random variable whose values are called *states*. The set of all possible values of X_t is the *state space* of the stochastic process.

Parameter space T		
State space	Discrete	Continuous
Discrete	# jobs at k -th job departure	# jobs at time t
Continuous	waiting time of k -th job	total service time at time t

Bernoulli process

Bernoulli random variable

Random variable X on state space $\{0, 1\}$ defined by:

$$\Pr(X=1) = p \quad \text{and} \quad \Pr(X=0) = 1-p$$

is a *Bernoulli* random variable.

The mass function is given by $f(k; p) = p^k \cdot (1-p)^{1-k}$ for $k \in \{0, 1\}$.

Expectation $E[X] = p$; variance $\text{Var}[X] = E[X^2] - (E[X])^2 = p \cdot (1-p)$.

Bernoulli process

A *Bernoulli process* is a sequence of independent and identically distributed Bernoulli random variables X_1, X_2, \dots

Binomial process

Binomial process

Let X_1, X_2, \dots be a Bernoulli process. The *binomial* process S_n is defined by $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$. The probability distribution of “counting process” S_n is given by:

$$\Pr\{S_n = k\} = \binom{n}{k} p^k \cdot (1-p)^{n-k} \quad \text{for } 0 \leq k \leq n$$

Moments: $E[S_n] = n \cdot p$ and $\text{Var}[S_n] = n \cdot p \cdot (1-p)$.

Geometric distribution

Let r.v. T_i be the number of steps between increments of counting process S_n . Then:

$$\Pr\{T_i = k\} = (1-p)^{k-1} \cdot p \quad \text{for } k \geq 1$$

This is a *geometric distribution*. We have $E[T_i] = \frac{1}{p}$ and $\text{Var}[T_i] = \frac{1-p}{p^2}$.

Intuition: Geometric distribution = number of Bernoulli trials needed for one success.

Joint distribution function

Joint distribution function

The *joint* distribution function of stochastic process $X = \{X_t \mid t \in T\}$ is given for $n, t_1, \dots, t_n \in T$ and d_1, \dots, d_n by:

$$F_X(d_1, \dots, d_n; t_1, \dots, t_n) = \Pr\{X(t_1) \leq d_1, \dots, X(t_n) \leq d_n\}$$

The shape of F_X depends on the stochastic dependency between $X(t_i)$.

Stochastic independence

Random variables X_i on probability space \mathcal{P} are *independent* if:

$$F_X(d_1, \dots, d_n; t_1, \dots, t_n) = \prod_{i=1}^n F_X(d_i; t_i) = \prod_{i=1}^n \Pr\{X(t_i) \leq d_i\}.$$

A renewal process is a discrete-time stochastic process where $X(t_1), X(t_2), \dots$ are independent, identically distributed, non-negative random variables.

Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

$$\Pr\{X = k + m \mid X > m\} = \Pr\{X = k\} \quad \text{for any } m \in T, k \geq 1$$

This is called the *memoryless* property, and X is a *memoryless r.v.*

2. Any discrete random variable which is memoryless is geometrically distributed.

Proof:

On the black board.