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Geometric distribution

Geometric distribution

Let X be a discrete random variable, natural k > 0 and 0 < p < 1. The
mass function of a geometric distribution is given by:

Pr{X=k}=(1-p)"p

We have E[X] = 1 and Var[X] = £ and cdf Pr{X < k} =1 - (1—-p)*.

Geometric distributions and their cdf’s
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Overview
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Discrete-Time Markov Chains

Memoryless property

1. For any random variable X with a geometric distribution:
P{X=k+m|X>m} = P{X =k} forany me T, k>1

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically
distributed.

Proof:
On the black board.
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Joint distribution function

Joint distribution function

The joint distribution function of stochastic process X = { X; |t € T } is
given for n, t1,...,t, € T and dy,...,d, by:

Fx(dl,...,d,-,;tl,...,tn) = Pr{X(tl) < d1,...,X(t,,) < d,,}

The shape of Fx depends on the stochastic dependency between X(t;).

Stochastic independence

Random variables X; on probability space P are independent if:

Fx(di,....dmitr,....ta) = [] Fx(diiti) = J]Pr{X(t;)<d;}.
i=1 i=1

|
A renewal process is a discrete-time stochastic process where X(t1), X(t2), ... are
independent, identically distributed, non-negative random variables.
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Discr;t;—T‘irr‘]e Markov C‘ha?ns

Invariance to time-shifts

Time homogeneity

Markov process { X(t) | t € T } is time-homogeneous iff for any t' < t:
Pr{X(t)=d|X(t')=d"} = P{X(t—1t)=d|X(0)=d}.

A time-homogeneous stochastic process is invariant to time shifts.

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space.

Markov property

Markov process

A discrete-time stochastic process { X(t) | t € T } over state space
{do, di,...} is a Markov process if for any to < t1 < ... < tp < tht1:

Pr{X(t,,_H) = d,,_|_1 ’ X(to) = do,X(tl) =di,... ,X(tn) = dn}

Pr{X(tn+1) = dny1 | X(tn) = dn}

The distribution of X(tn+1), given the values X(tp) through X(t,), only
depends on the current state X(t,).

________________________________________________________________|
The conditional probability distribution of future states of a Markov process only
depends on the current state and not on its further history.
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Discrete-time Markov chain

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probabilities

The (one-step) transition probability from s € S to s’ € S at epoch n € N
is given by:

pl(s,s") = P{Xpp1=5|Xo=5s} = Pr{Xy =5 | Xo=s}

where the last equality is due to time-homogeneity.

Since p(M(-) = p(k)(.), the superscript (n) is omitted, and we write p(-).
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Transition probability matrix

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probability matrix

Let P be a function with P(s;, s;) = p(s;, s;). For finite state space S,
function P is called the transition probability matrix of the DTMC with
state space S.

1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its
elements are in [0, 1], and each row sum equals one.

2. Matrix P has an eigenvalue of one, and all its eigenvalues are at most
one.

3. Forall n € N, P" is a stochastic matrix.
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DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC D is a tuple (S, P, tn:, AP, L) with:
» S is a countable nonempty set of states
» P:5xS — [0, 1], transition probability function s.t. 3, P(s,s’) =1
Lt © S — [0, 1], the initial distribution with Zs Line(s) = 1
se

v

v

AP is a set of atomic propositions.

> L:S — 2P the labeling function, assigning to state s, the set L(s)
of atomic propositions that are valid in s.

Initial states

> 1i(s) is the probability that DTMC D starts in state s
> the set {s € S| t;m(s) > 0} are the possible initial states.
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Example: roulette in Monte Carlo, 1913
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Discrete-Time Markov Chains

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left"”; tails = “go right”. Does this DTMC adequately model a fair
six-sided die?
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Craps Craps

CBM)S .GAMBHNG
= 0

» Roll two dice and bet L

» Come-out roll (“pass line” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

> Repeat until 7 or the “point” is thrown:
» outcome 7: lose (“seven-out”)
» outcome the point: win
> any other outcome: roll again
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Discrete-Time Markov Chains

A DTMC model of Craps State residence time distribution

|
Let Ts be the number of epochs of DTMC D to stay in state s:

» Come-out roll:
» 7 or 11: win P{Ts=1} = 1-P(s,s)
» 2.3 or12: | Pr{Ts=2} = P(s,s) (1-P(s,5s))
lose p @
> else: roll ; L 1 NG TG N e e e
again Pr{Ts=n} = P(s,s)" 1 -(1-P(s5s))

» Next roll(s): . 5 So, the state residence times in a DTMC obey a geometric distribution.
12
: :):oilsi'ewin ““ ﬂ The expected number of time steps to stay in state s equals E[T] = #(s’s).
r ‘ ‘4 : The variance of the residence time distribution is Var[Ts] = %,
> else: roll T (1-P(s:5))
again 1 1

|
Recall that the geometric distribution is the only discrete probability distribution
that possesses the memoryless property.
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Discrete-Time Markov Chains Discrete-Time Markov Chains

Evolution of an example DTMC Determining n-step transition probabilities

n-step transition probabilities

1
T

The probability to move from s to s’ in n € N steps is inductively defined:

ps<(0) = 1 ifs=5', and O otherwise,

zero-th epoch frst epoch ps.s(1) = P(s,s’), and for n > 1 by the Chapman-Kolmogorov equation:

ps,s'(n) = Zps,s”(/) -psr s (n—1)  forall0</<n

s/’

Proof: see blackboard.

second epach third epoch

For / =1 and n > 0 we obtain: ps +(n) = Zps,s”(l) - psr,s(n—1)

s//
|
(n) — p(») . pn-1) — p. p(-1); " iti ili i
We want to determine Ps,s/(n) _ Pr{ X(n) — 4| X(O) _ s} for n € N. P P P P-P is the n-step transition probability matrix
Repeating this scheme: P(" =P . p(n-1) = = pr-1.p(1) = p,
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Transient probability distribution Transient probability distribution: example

Transient distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

@?(t) = Z Line(s) - P"(s, t)

seES

O©P(t) is called the transient state probability at epoch n for state t. The
function ©F is the transient state distribution at epoch n of DTMC D.
When considering ©F as vector (©F);cs we have:

e? == L,’nit‘P'P‘...'P == L,‘n,‘t'Pn.

n times
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Discrete-Time Markov Chains

Paths in a DTMC
State graph

The state graph of DTMC D is a digraph G = (V, E) with V are the
states of D, and (s, s’) € E iff P(s,s’) > 0.

Paths

Paths in D are maximal (i.e., infinite) paths in its state graph. Thus, a
path is an infinite sequence of states spsisy ... ... with P(s;, si+1) > 0 for
all /.

Let Paths(D) denote the set of paths in D, and Paths*(D) the set of finite
prefixes thereof.

Direct successors and predecessors

Post(s) ={s' € S| P(s,s’) >0} and Pre(s) ={s'€ S| P(s',s) >0}
are the set of direct successors and predecessors of s respectively. Post*(s)
and Pre*(s) are the reflexive and transitive closure of Post and Pre.
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Probability measure on DTMCs

Cylinder set

The cylinder set of finite path # = sp s ...s, € Paths*(D) is defined by:
Cyl(#) = {m € Paths(D) | # is a prefix of 7 }

The cylinder set spanned by finite path 7 thus consists of all infinite paths
that have prefix @. Cylinder sets serve as basic events of the smallest
o-algebra on Paths(D).

o-algebra of a DTMC

The o-algebra associated with DTMC D is the smallest o-algebra that
contains all cylinder sets Cyl(7) where 7 ranges over all finite path
fragments in D.
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Paths and probabilities

|
To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:

» Sample space := set of all infinite paths starting in s
» Events := sets of infinite paths starting in s
» Basic events := cylinder sets

» Cylinder set of finite path 7 := set of all infinite continuations of 7
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Probability measure on DTMCs

Cylinder set
The cylinder set of finite path # = sp 51 ... s, € Paths*(D) is defined by:

Cyl(#) = {m € Paths(D) | # is a prefix of 7 }

Probability measure

Pr is the unique probability measure on the o-algebra on Paths(D) defined
by:
Pr(Cyl(so...sn)) = tme(s0) - P(sos1-..5n)

where P(sps1...s,) = [ P(si,si+1) for n >0 and P(sp) = 1.
o<i<n
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Example
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