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Discrete-Time Markov Chains

Overview
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Geometric distribution
Geometric distribution
Let X be a discrete random variable, natural k > 0 and 0 < p 6 1. The
mass function of a geometric distribution is given by:

Pr{X = k } = (1− p)k−1·p

We have E [X ] = 1
p and Var[X ] = 1−p

p2 and cdf Pr{X 6 k } = 1− (1−p)k .

Geometric distributions and their cdf’s
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Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

Pr{X = k + m | X > m} = Pr{X = k} for any m ∈ T , k > 1

This is called the memoryless property, and X is a memoryless r.v..
2. Any discrete random variable which is memoryless is geometrically

distributed.

Proof:
On the black board.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/25

http://www-i2.informatik.rwth-aachen.de/i2/mvps11/


Discrete-Time Markov Chains

Joint distribution function
Joint distribution function
The joint distribution function of stochastic process X = {Xt | t ∈ T } is
given for n, t1, . . . , tn ∈ T and d1, . . . , dn by:

FX (d1, . . . , dn; t1, . . . , tn) = Pr{X (t1) 6 d1, . . . ,X (tn) 6 dn }

The shape of FX depends on the stochastic dependency between X (ti ).

Stochastic independence
Random variables Xi on probability space P are independent if:

FX (d1, . . . , dn; t1, . . . , tn) =
n∏

i=1
FX (di ; ti ) =

n∏
i=1

Pr{X (ti ) 6 di }.

A renewal process is a discrete-time stochastic process where X (t1),X (t2), . . . are
independent, identically distributed, non-negative random variables.

The next state of the stochastic process only depends on the current state, and
not on states assumed previously. This is the Markov property.
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Markov property

Markov process
A discrete-time stochastic process {X (t) | t ∈ T } over state space
{ d0, d1, . . . } is a Markov process if for any t0 < t1 < . . . < tn < tn+1 :

Pr{X (tn+1) = dn+1 | X (t0) = d0,X (t1) = d1, . . . ,X (tn) = dn }
=

Pr{X (tn+1) = dn+1 | X (tn) = dn }

The distribution of X (tn+1), given the values X (t0) through X (tn), only
depends on the current state X (tn).

The conditional probability distribution of future states of a Markov process only
depends on the current state and not on its further history.
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Invariance to time-shifts

Time homogeneity
Markov process {X (t) | t ∈ T } is time-homogeneous iff for any t ′ < t:

Pr{X (t) = d | X (t ′) = d ′ } = Pr{X (t − t ′) = d | X (0) = d ′ }.

A time-homogeneous stochastic process is invariant to time shifts.

Discrete-time Markov chain
A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space.
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Discrete-time Markov chain

Discrete-time Markov chain
A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probabilities
The (one-step) transition probability from s ∈ S to s ′ ∈ S at epoch n ∈ N
is given by:

p(n)(s, s ′) = Pr{Xn+1 = s ′ | Xn = s } = Pr{X1 = s ′ | X0 = s }

where the last equality is due to time-homogeneity.
Since p(n)(·) = p(k)(·), the superscript (n) is omitted, and we write p(·).
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Transition probability matrix
Discrete-time Markov chain
A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probability matrix
Let P be a function with P(si , sj) = p(si , sj). For finite state space S,
function P is called the transition probability matrix of the DTMC with
state space S.

Properties

1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its
elements are in [0, 1], and each row sum equals one.

2. Matrix P has an eigenvalue of one, and all its eigenvalues are at most
one.

3. For all n ∈ N, Pn is a stochastic matrix.
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Example: roulette in Monte Carlo, 1913
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DTMCs — A transition system perspective
Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit,AP, L) with:

I S is a countable nonempty set of states
I P : S×S → [0, 1], transition probability function s.t.

∑
s′ P(s, s ′) = 1

I ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.
I L : S → 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.
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Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”. Does this DTMC adequately model a fair
six-sided die?
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Craps
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Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win
I any other outcome: roll again
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A DTMC model of Craps

I Come-out roll:
I 7 or 11: win
I 2, 3, or 12:

lose
I else: roll

again

I Next roll(s):
I 7: lose
I point: win
I else: roll

again
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State residence time distribution

Let Ts be the number of epochs of DTMC D to stay in state s:

Pr{Ts = 1 } = 1− P(s, s)

Pr{Ts = 2 } = P(s, s) · (1− P(s, s))

. . . . . . . . . . . . . . .

Pr{Ts = n } = P(s, s)n−1 · (1− P(s, s))

So, the state residence times in a DTMC obey a geometric distribution.
The expected number of time steps to stay in state s equals E [Ts ] = 1

1−P(s,s) .
The variance of the residence time distribution is Var[Ts ] = P(s,s)

(1−P(s,s))2 .

Recall that the geometric distribution is the only discrete probability distribution
that possesses the memoryless property.
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Evolution of an example DTMC

We want to determine ps,s′(n) = Pr{X (n) = s ′ | X (0) = s } for n ∈ N.
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Determining n-step transition probabilities
n-step transition probabilities
The probability to move from s to s ′ in n ∈ N steps is inductively defined:

ps,s′(0) = 1 if s = s ′, and 0 otherwise,

ps,s′(1) = P(s, s ′), and for n > 1 by the Chapman-Kolmogorov equation:

ps,s′(n) =
∑
s′′

ps,s′′(l) · ps′′,s′(n−l) for all 0 < l < n

Proof: see blackboard.

For l = 1 and n > 0 we obtain: ps,s′(n) =
∑
s′′

ps,s′′(1) · ps′′,s′(n−1)

P(n) = P(1) · P(n−1) = P · P(n−1) is the n-step transition probability matrix

Repeating this scheme: P(n) = P · P(n−1) = . . . = Pn−1 · P(1) = Pn.
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Transient probability distribution
Transient distribution
Pn(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.
The probability of DTMC D being in state t after exactly n transitions is:

ΘDn (t) =
∑
s∈S

ιinit(s) · Pn(s, t)

ΘDn (t) is called the transient state probability at epoch n for state t. The
function ΘDn is the transient state distribution at epoch n of DTMC D.
When considering ΘDn as vector (ΘDn )t∈S we have:

ΘDn = ιinit · P · P · . . . · P︸ ︷︷ ︸
n times

= ιinit · Pn.
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Transient probability distribution: example
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Paths in a DTMC
State graph
The state graph of DTMC D is a digraph G = (V ,E ) with V are the
states of D, and (s, s ′) ∈ E iff P(s, s ′) > 0.

Paths
Paths in D are maximal (i.e., infinite) paths in its state graph. Thus, a
path is an infinite sequence of states s0s1s2 . . . . . . with P(si , si+1) > 0 for
all i .
Let Paths(D) denote the set of paths in D, and Paths∗(D) the set of finite
prefixes thereof.

Direct successors and predecessors
Post(s) = { s ′ ∈ S | P(s, s ′) > 0 } and Pre(s) = { s ′ ∈ S | P(s ′, s) > 0 }
are the set of direct successors and predecessors of s respectively. Post∗(s)
and Pre∗(s) are the reflexive and transitive closure of Post and Pre.
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Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:

I Sample space := set of all infinite paths starting in s

I Events := sets of infinite paths starting in s

I Basic events := cylinder sets

I Cylinder set of finite path π̂ := set of all infinite continuations of π̂
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Probability measure on DTMCs

Cylinder set
The cylinder set of finite path π̂ = s0 s1 . . . sn ∈ Paths∗(D) is defined by:

Cyl(π̂) =
{
π ∈ Paths(D) | π̂ is a prefix of π

}
The cylinder set spanned by finite path π̂ thus consists of all infinite paths
that have prefix π̂. Cylinder sets serve as basic events of the smallest
σ-algebra on Paths(D).

σ-algebra of a DTMC
The σ-algebra associated with DTMC D is the smallest σ-algebra that
contains all cylinder sets Cyl(π̂) where π̂ ranges over all finite path
fragments in D.
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Probability measure on DTMCs

Cylinder set
The cylinder set of finite path π̂ = s0 s1 . . . sn ∈ Paths∗(D) is defined by:

Cyl(π̂) =
{
π ∈ Paths(D) | π̂ is a prefix of π

}

Probability measure
Pr is the unique probability measure on the σ-algebra on Paths(D) defined
by:

Pr
(
Cyl(s0 . . . sn)

)
= ιinit(s0) · P(s0 s1 . . . sn)

where P(s0 s1 . . . sn) =
∏

06i<n
P(si , si+1) for n > 0 and P(s0) = 1.
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Example
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