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DTMCs — A transition system perspective
Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit,AP, L) with:

I S is a countable nonempty set of states
I P : S×S → [0, 1], transition probability function s.t.

∑
s′ P(s, s ′) = 1

I ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.
I L : S → 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.
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Paths in a DTMC
State graph
The state graph of DTMC D is a digraph G = (V ,E ) with V are the
states of D, and (s, s ′) ∈ E iff P(s, s ′) > 0.

Paths
Paths in D are maximal (i.e., infinite) paths in its state graph. Thus, a
path is an infinite sequence of states s0s1s2 . . . . . . with P(si , si+1) > 0 for
all i . Let π[i ] = si .
Let Paths(D) denote the set of paths in D, and Paths∗(D) the set of finite
prefixes thereof.

Direct successors and predecessors
Post(s) = { s ′ ∈ S | P(s, s ′) > 0 } and Pre(s) = { s ′ ∈ S | P(s ′, s) > 0 }
are the set of direct successors and predecessors of s respectively. Post∗(s)
and Pre∗(s) are the reflexive and transitive closure of Post and Pre.
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Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:

I Sample space := set of all infinite paths starting in s

I Events := sets of infinite paths starting in s

I Basic events := cylinder sets

I Cylinder set of finite path π̂ := set of all infinite continuations of π̂
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Probability measure on DTMCs

Cylinder set
The cylinder set of finite path π̂ = s0 s1 . . . sn ∈ Paths∗(D) is defined by:

Cyl(π̂) =
{
π ∈ Paths(D) | π̂ is a prefix of π

}
The cylinder set spanned by finite path π̂ thus consists of all infinite paths
that have prefix π̂. Cylinder sets serve as basic events of the smallest
σ-algebra on Paths(D).

σ-algebra of a DTMC
The σ-algebra associated with DTMC D is the smallest σ-algebra that
contains all cylinder sets Cyl(π̂) where π̂ ranges over all finite path
fragments in D.
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Probability measure on DTMCs

Cylinder set
The cylinder set of finite path π̂ = s0 s1 . . . sn ∈ Paths∗(D) is defined by:

Cyl(π̂) =
{
π ∈ Paths(D) | π̂ is a prefix of π

}

Probability measure
Pr is the unique probability measure on the σ-algebra on Paths(D) defined
by:

Pr
(
Cyl(s0 . . . sn)

)
= ιinit(s0) · P(s0 s1 . . . sn)

where P(s0 s1 . . . sn) =
∏

06i<n
P(si , si+1) for n > 0 and P(s0) = 1.
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Example
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Some events of interest
Let DTMC D with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G ⊆ S. Formally:

♦G = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G }

Invariance, i.e., always stay in state in G :

�G = {π ∈ Paths(D) | ∀i ∈ N. π[i ] ∈ G } = ♦G .

Constrained reachability
Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UG = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G ∧ ∀j < i . π[j] 6∈ F }
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More events of interest

Repeated reachability
Repeatedly visit a state in G ; formally:

�♦G = {π ∈ Paths(D) | ∀i ∈ N. ∃j > i . π[j] ∈ G }

Persistence
Eventually reach in a state in G and always stay there; formally:

♦�G = {π ∈ Paths(D) | ∃i ∈ N. ∀j > i . π[j] ∈ G }
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Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any DTMC.

Proof:
To show this, every event will be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!— in the σ-algebra on
infinite paths in a DTMC.

Note that �G = ♦G and ♦�G = �♦G .
It remains to prove the measurability for the remaining three cases.
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Proof for ♦G
Which event (in our σ-algebra) does ♦G formally mean?

the union of all cylinders Cyl(s0 . . . sn) where

s0 . . . sn is a finite path in D with s0, . . . , sn−1 /∈ G and sn ∈ G , i.e.,

♦G =
⋃

s0...sn∈Paths∗(D)∩(S\G)∗G

Cyl(s0 . . . sn)

Thus ♦G is measurable.
As all cylinder sets are pairwise disjoint, its probability is defined by:

Pr(♦G) =
∑

s0...sn∈Paths∗(D)∩(S\G)∗G

Pr
(
Cyl(s0 . . . sn)

)
=

∑
s0...sn∈Paths∗(D)∩(S\G)∗G

ιinit(s0) · P(s0 . . . sn)

A similar proof strategy applies to the case F UG .
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Proof for �♦G
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Reachability probabilities: Knuth’s die

I Consider the event ♦4
I Using the previous theorem we obtain:

Pr(♦4) =
∑

s0...sn∈(S\4∗)4

P(s0 . . . sn)

I This yields:
P(s0s2s54) + P(s0s2s6s2s54) + . . . . . .

I Or:
∞∑

k=0
P(s0s2(s6s2)ks54)

I Or: 18

∞∑
k=0

(1
4
)k

I Geometric series: 18 ·
1

1− 1
4

=
1
8 ·

4
3 =

1
6

There is however an simpler way to obtain reachability probabilities!
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Reachability probabilities in finite DTMCs
Problem statement
Let D be a DTMC with finite state space S, s ∈ S and G ⊆ S.
Aim: determine Pr(s |= ♦G) = Prs(♦G) = Prs{π ∈ Paths(s) | π |= ♦G }
where Prs is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

I Let variable xs = Pr(s |= ♦G) for any state s
I if G is not reachable from s, then xs = 0
I if s ∈ G then xs = 1

I For any state s ∈ Pre∗(G) \ G :

xs =
∑

t∈S\G
P(s, t) · xt

︸ ︷︷ ︸
reach G via t ∈ S \ G

+
∑
u∈G

P(s, u)︸ ︷︷ ︸
reach G in one step
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Reachability probabilities: Knuth’s die

I Consider the event ♦4
I Using the previous characterisation we

obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 = 1
2xs1 + 1

2xs2

xs2 = 1
2xs5 + 1

2xs6

xs5 = 1
2x5 + 1

2x4
xs6 = 1

2xs2 + 1
2x6

I Gaussian elimination yields:

xs5 = 1
2 , xs2 = 1

3 , xs6 = 1
6 , and xs0 = 1

6
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Linear equation system

Reachability probabilities as linear equation system

I Let S? = Pre∗(G) \ G , the states that can reach G by > 0 steps
I A =

(
P(s, t)

)
s,t∈S̃ , the transition probabilities in S?

I b =
(
bs
)

s∈S?
, the probs to reach G in 1 step, i.e., bs =

∑
u∈G

P(s, u)

Then: x = (xs)s∈S?
with xs = Pr(s |= ♦G) is the unique solution of:

x = A·x + b or (I− A)·x = b

where I is the identity matrix of cardinality |S?| × |S?|.
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Reachability probabilities: Knuth’s die

I Consider the event ♦4
I S? = { s0, s2, s5, s6 } 1 − 1

2 − 1
2 0

0 1 − 1
2 − 1

2
0 0 1 0
0 − 1

2 0 1

·
 xs0

xs2
xs5
xs6

 =

 0
0
1
2
0


I Gaussian elimination yields:

xs5 = 1
2 , xs2 = 1

3 , xs6 = 1
6 , and xs0 = 1

6

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/33



Reachability Probabilities Reachability probabilities

Constrained reachability probabilities
Problem statement
Let D be a DTMC with finite state space S, s ∈ S and F ,G ⊆ S.
Aim: Pr(s |= F UG) = Prs(F UG) = Prs{π ∈ Paths(s) | π |= F UG }
where Prs is the probability measure in D with single initial state s.

Characterisation of constrained reachability probabilities

I Let variable xs = Pr(s |= F UG) for any state s
I if G is not reachable from s via F , then xs = 0
I if s ∈ G then xs = 1

I For any state s ∈ (Pre∗(G) ∩ F ) \ G :

xs =
∑

t∈S\G
P(s, t) · xt +

∑
u∈G

P(s, u)
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Remark

In the previous characterisation we basically set:
I S=1 = G
I S=0 = { s ∈ S | Pr(F UG) = 0 }
I S? = S \ (S=0 ∪ S=1)

In fact any partition of S satisfying the following constraints will do:
I G ⊆ S=1 ⊆ { s ∈ S | Pr(F UG) = 1 }
I F \ G ⊆ S=0 ⊆ { s ∈ S | Pr(F UG) = 0 }
I S? = S \ (S=0 ∪ S=1)

In practice, S=0 and S=1 should be chosen as large as possible, as then S? is of
minimal size, and the smallest linear equation system needs to be solved.
Thus S=0 = { s ∈ S | Pr(F UG) = 0 } and S=1 = { s ∈ S | Pr(F UG) = 1 }.

These sets can easily be determined in linear time by a graph analysis.
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Iteratively computing reachability probabilities
Theorem
The vector x =

(
Pr(s |= F UG)

)
s∈S?

is the unique solution of:

y = A·y + b

with A and b as defined before.
Furthermore, let:

x(0) = 0 and x(i+1) = A·x(i) + b for 0 6 i .

Then:
1. x(n)(s) = Pr(s |= F U6n G) for s ∈ S?

2. x(0) 6 x(1) 6 x(2) 6 . . . 6 x
3. x = limn→∞ x(n)

where F U6nG contains those paths that reach G via F within n steps.
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Proof
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Remark

Iterative algorithms to compute x
There are various algorithms to compute x = limn→∞ x(n) where:

x(0) = 0 and x(i+1) = A·x(i) + b for 0 6 i .

The Power method computes vectors x(0), x(1), x(2), . . . and aborts if:

max
s∈S?

| x (n+1)
s − x (n)

s | < ε for some small tolerance ε

This technique guarantees convergence.
Alternative iterative techniques: e.g., Jacobi or Gauss-Seidel, successive
overrelaxation (SOR). Details of these techniques fall outside the scope of these
lecture series.
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Example: Knuth’s die

I Let G = { 1, 2, 3, 4, 5, 6 }
I Then Pr(s0 |= ♦G) = 1
I And Pr(s0 |= ♦6kG)

for k ∈ IN is given by:
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Example: Craps game

I Pr(start |= R U6n G)

I S=0 = { 8, 9, 10, lost }

I S=1 = {won }

I S? = { start, 4, 5, 6 }
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Example: Craps game

I start < 4 < 5 < 6

I A = 1
36

 0 3 4 5
0 27 0 0
0 0 26 0
0 0 0 25



I b = 1
36

 8
3
4
5



x(0) = 0 and x(i+1) = Ax(i) + b for 0 6 i < n.
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Example: Craps game

x(2) =
1
36


0 3 4 5
0 27 0 0
0 0 26 0
0 0 0 25


︸ ︷︷ ︸

A

· 136


8
3
4
5


︸ ︷︷ ︸

x(1)

+
1
36


8
3
4
5


︸ ︷︷ ︸

b

=

(
1
36

)2


338
189
248
305


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Recall: transient probability distribution
Transient distribution
Pn(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.
The probability of DTMC D being in state t after exactly n transitions is:

ΘDn (t) =
∑
s∈S

ιinit(s) · Pn(s, t) =

The function ΘDn is the transient state distribution at epoch n of DTMC
D.
When considering ΘDn as vector (ΘDn )t∈S we have:

ΘDn = ιinit · P · P · . . . · P︸ ︷︷ ︸
n times

= ιinit · Pn.

Computation: ΘD0 = ιinit and ΘDn+1 = ΘDn ·P for n > 0.
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Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G ]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G ]

= ΘD[G]
n
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Constrained reachability = transient probabilities

Aim
Compute Pr(F U6n G) in DTMC D. Observe (as before) that once a path
π reaches G , then the remaining behaviour along π is not important. Now
also observe that once s ∈ F \ G is reached, then the remaining behaviour
along π is not important. This suggests to make all states in G and F \ G
absorbing.

Lemma

Pr(F U6n G)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[F ∪ G ]

= ιinit · Pn
F∪G︸ ︷︷ ︸

in D[F ∪ G ]

= ΘD[F∪G]
n
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Example: Craps game
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