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DTMCs — A transition system perspective

Discrete-time Markov chain
A DTMC D is a tuple (S, P, i, AP, L) with:

» S is a countable nonempty set of states

» P:5xS — [0, 1], transition probability function s.t. 3, P(s,s’) =1
> L 0 S — [0, 1], the initial distribution with Y ¢,.(s) =1
seS
» AP is a set of atomic propositions.
» L:S — 2P the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states

> Liie(S) is the probability that DTMC D starts in state s
> the set {s € S| tinie(s) > 0} are the possible initial states.
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Paths in a DTMC
State graph

The state graph of DTMC D is a digraph G = (V, E) with V are the
states of D, and (s, s’) € E iff P(s,s’) > 0.

Measurable space on DTMC paths

Paths

Paths in D are maximal (i.e., infinite) paths in its state graph. Thus, a
path is an infinite sequence of states spsisy ... ... with P(s;, si+1) > 0 for
all i. Let 7[i] = s;.

Let Paths(D) denote the set of paths in D, and Paths*(D) the set of finite
prefixes thereof.

Direct successors and predecessors

Post(s) ={s' € S| P(s,s’) >0} and Pre(s) ={s'€ S| P(s',s) >0}
are the set of direct successors and predecessors of s respectively. Post*(s)
and Pre*(s) are the reflexive and transitive closure of Post and Pre.
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Probability measure on DTMCs

Cylinder set

The cylinder set of finite path # = sp s ...s, € Paths*(D) is defined by:
Cyl(#) = {m € Paths(D) | # is a prefix of 7 }

The cylinder set spanned by finite path 7 thus consists of all infinite paths
that have prefix @. Cylinder sets serve as basic events of the smallest
o-algebra on Paths(D).

o-algebra of a DTMC

The o-algebra associated with DTMC D is the smallest o-algebra that
contains all cylinder sets Cyl(7) where 7 ranges over all finite path
fragments in D.
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Paths and probabilities

|
To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition

For a given state s in DTMC D:
» Sample space := set of all infinite paths starting in s
» Events := sets of infinite paths starting in s

» Basic events := cylinder sets

» Cylinder set of finite path 7 := set of all infinite continuations of 7

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/33
Reachability Probabilities Measurable space on DTMC paths

Probability measure on DTMCs

Cylinder set

The cylinder set of finite path # = sp 51 ... s, € Paths*(D) is defined by:

Cyl(#) = {m € Paths(D) | # is a prefix of 7 }

Probability measure

Pr is the unique probability measure on the o-algebra on Paths(D) defined
by:
Pr(Cyl(so...sn)) = timw(s0) - P(sos1-..5n)

where P(sps1...s,) = [ P(si,si+1) for n >0 and P(sp) = 1.
o<i<n
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Example
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Some events of interest
Let DTMC D with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G C S. Formally:
O0G = {m € Paths(D) | Jie N.x[i] € G}
Invariance, i.e., always stay in state in G:

OG = {n € Paths(D) |Vie N.w[i] e G} = OG.

Constrained reachability

Or “reach-avoid” properties where states in £ C S are forbidden:

FUG = {n € Paths(D) | Jie N.w[i] € G AVj<i.m[]gF}
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More events of interest

Repeated reachability
Repeatedly visit a state in G; formally:

O00G = {7 e Paths(D) |VieN.3j > i.n[jle G}

Persistence

Eventually reach in a state in G and always stay there; formally:

OOG = {m € Paths(D) | Ji e N.Vj > i.7w[j] € G}
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Measurability

Measurability theorem

Events ¢G, OG, FU G, OOG and OIG are measurable on any DTMC.

To show this, every event will be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!l— in the o-algebra on
infinite paths in a DTMC.

Note that G = OG and OLG = 0OG.

It remains to prove the measurability for the remaining three cases.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Reachability Probabilities Reachability probabilities

Proof for OO G

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Proof for G
Which event (in our o-algebra) does ¢ G formally mean?
the union of all cylinders Cyl(sp . ..s,) where
S0 ---Sp is a finite path in D with sp,...,s,-1 ¢ G and s, € G, i.e,,

0G = U Cyl(so - . . sp)

50...s,€ Paths™ (D)N(S\G)* G

Thus QG is measurable.
As all cylinder sets are pairwise disjoint, its probability is defined by:

PAOG) = >

s0...sn€ Paths™ (D)N(S\G)* G

-y

s0...s,€ Paths™ (D)N(S\G)* G

Pr(Cyl(so . .. sn))
tinit(S0) - P(so - . . Sp)

A similar proof strategy applies to the case FU G.
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Reachability probabilities: Knuth’s die

» Consider the event (4

» Using the previous theorem we obtain:

o .D ] Pr(O4) = Z P(so...sn)

S0...5,€(S5\4*)4

{init} » This yields:
P(s052554) + P(s0525652554) + ... ...

> Or: Z P(s052(5652)" 554)
k=0

1o, 1.k
» Or: - (7)
52-(3

» Geometric series: 1 L — li — 1
"8 1—% 83 6

There is however an simpler way to obtain reachability probabilities!
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Reachability probabilities in finite DTMCs Reachability probabilities: Knuth’s die
Let D be a DTMC with finite state space S, s € S and G C S. > Consider the event O4
Aim: determine Pr(s = OG) = Prs(0G) = Pri{m € Paths(s) | 7 = 0G } > gbsizign_the previous characterisation we

where Prs is the probability measure in D with single initial state s.
X1=x=x3=x5=x5 =0and x4 =1

Characterisation of reachability probabilities

Xs;, = Xs,

1 3:X54:0

{init}
» Let variable x; = Pr(s = O G) for any state s
» if G is not reachable from s, then xs =0
» if s€ G then xs =1

» For any state s € Pre*(G) \ G:

_ 1 1
Xsy = 5Xs; T 5Xs,
_1 1
Xs, = 5Xs; + 5Xss

1 1
Xss = 5X5 + 5Xa

_1 1
Xs5 = 5Xs, + 5X6

Xs = Z P(s.t)-x + Z P(s, u) » Gaussian elimination yields:
teS\G ueG
M _ 1 _ 1 _ 1 _ 1
reach Gviate S\ G reach G in one step Xs; = 51 X = 30 X5 = 5 and | X =5
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Reachability probabilities as linear equation system
y P q y os » Consider the event (4
» Let S; = Pre*(G) \ G, the states that can reach G by > 0 steps @ 9. .D‘ > S; = {0, 5 55,5 }
» A = (P(s, t))s,teS" the transition probabilities in S7 - 11 -1 o s 0
_ . : _ o 1 -3 -3 Xs 0
> b = (bs), g, the probs to reach G in 1 step, i.e., bs = > P(s,u) o 0 1~ o | = :
ueG 1
. . . . 0 -3 0 1 Xsg 0
Then: x = (xs)ses, with xs = Pr(s = 0 G) is the unique solution of:
x =Ax +b o (I-A)x = b » Gaussian elimination yields:
1 1 1 1
. . . . . . = 3, = 3, = =, and = =
where | is the identity matrix of cardinality |S;| x |S7]. T2 T3 TG "6
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Constrained reachability probabilities Remark

Problem statement |

Let D be a DTMC with finite state space S, s€ Sand F,G C S. In the previous characterisation we basically set:
Aim: Pr(s = FUG) = Prs(FUG) = Prs{m € Paths(s) |t = FUG} »S 1 =G

where Prg is the probability measure in D with single initial state s. > S0 = {s€S5|P(FUG)=0}
> S = S\ (S5=0US=1)

In fact any partition of S satisfying the following constraints will do:
» GCS_1C{seS|P(FUG)=1}

Characterisation of constrained reachability probabilities

» Let variable x; = Pr(s = F U G) for any state s _
» if G is not reachable from s via F, then x; = 0 > F\ GCS5=0C {s €S ’ Pr(FU G) :0}
» if s € G then x; =1 > S = S\ (S-0US.)
» For any state s € (Pre*(G)N F)\ G: In practice, S—o and S—; should be chosen as large as possible, as then S is of
minimal size, and the smallest linear equation system needs to be solved.
e = tezngP(s' B UGZGP(S' ) Thus Soo = {s€ S|P{FUG)=0}andS_; = {seS|P(FUG)=1}.

These sets can easily be determined in linear time by a graph analysis.
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Iteratively computing reachability probabilities Proof

The vector x = (Pr(s EFU G)) s is the unique solution of:
s€o?

y = Ay+b

with A and b as defined before.

Furthermore, let:

x® =0 and xU™) = Ax() 4+ bfor0 <.

Then:
1. x("N(s) = P(s EFUS"G) fors € S
2. x(0) < x(1) < x(2) <...<x
3. x=lim,_ x(n)
where F U S"G contains those paths that reach G via F within n steps.

Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems PLYEK]

Joost-Pieter Katoen



Reachability Probabilities Reachability probabilities

Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_,o0 X(") where:

x©® =0 and x(tD) = A.x() + b for 0 < /.
The Power method computes vectors x(©) x(1) x(2) . and aborts if:

max |x{MH) — x| < ¢ for some small tolerance &
SES?

This technique guarantees convergence.

Alternative iterative techniques: e.g., Jacobi or Gauss-Seidel, successive
overrelaxation (SOR). Details of these techniques fall outside the scope of these

lecture series.
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Example: Craps game

> Pr(start = RUS" G)
> S 0=1{8,910, lost }
> S_1={won}

> S; = {start, 4,56}

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Reachability Probabilities Reachability probabilities

Example: Knuth’s die

> Let G=1{1,2,3,4,56}
> Then Pr(sp = 0G) =1

» And Pr(sy = OSKG)
for k € IN is given by:

{init}

1.00

Probability
o
“n
=
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Reachability Probabilities

Example: Craps game

> start<4<5<6

0 3 4 5
o027 0 o
A =3%|0 0 2 o0
0O 0 0 25
8
3
'b:?164
5

x@ =0 and x(tD) = Ax() +bfor 0 < i< n.
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Example: Craps game

0 3 4 5 8 8 ) 338
@) 1 0 2r 0 O 1 3 1 3 1 189
X = — —_ + J— — i
36| 0 0 20 0 36| 4 36 | 4 36 248
0 0 0 25 5 5 305
A x(1) b
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Reachability probability = transient probabilities

Compute Pr(®S"G) in DTMC D. Observe that once a path 7 reaches G,

then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

|
Let DTMC D = (S, P, ty, AP, L) and G C S. The DTMC D[G] = (S, P¢,
Linit, AP, L) with Pg(s,t) = P(s,t) if s ¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Lemma
POS'G) = P{O"G) = uw-PE =71
—_——— ——— —
reachability in D reachability in D[G] in D[G]
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Recall: transient probability distribution

Transient distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

@?(t) = Zbinit(s) P7(s, t) =

sES

The function ©F is the transient state distribution at epoch n of DTMC
D.

When considering ©F as vector (©7);cs we have:

e = ,.-P-P-...-P = 4,.-P".
N————
n times

Computation: @é) = L and @},)Jrl = @?P for n > 0.
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Constrained reachability = transient probabilities

Compute Pr(F US" G) in DTMC D. Observe (as before) that once a path
7 reaches G, then the remaining behaviour along 7 is not important. Now
also observe that once s € F \ G is reached, then the remaining behaviour
along 7 is not important. This suggests to make all states in G and F \ G
absorbing.

Lemma

Tl RS = D[FUG
P{FUS"G) = PHO="G) = Ly Pl = ©PIFUC]
———— N———— S———
reachability in D reachability in D[F U G] in D[F U G]
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Example: Craps game
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