

Modeling and Verification of Probabilistic Systems

Lecture 3: Reachability Probabilities

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://www-i2.informatik.rwth-aachen.de/i2/mvps11/>

April 12, 2011

Overview

1 Measurable space on DTMC paths

- Discrete-time Markov chains
- Probability measure on DTMC paths

2 Reachability probabilities

- Events on DTMC paths
- Characterising reachability probabilities
- Constrained reachability probabilities
- Relation to transient probabilities

DTMCs — A transition system perspective

Discrete-time Markov chain

A **DTMC** \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

- ▶ S is a countable nonempty set of **states**
- ▶ $\mathbf{P} : S \times S \rightarrow [0, 1]$, **transition probability function** s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $\iota_{\text{init}} : S \rightarrow [0, 1]$, the **initial distribution** with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
- ▶ AP is a set of **atomic propositions**.
- ▶ $L : S \rightarrow 2^{AP}$, the **labeling function**, assigning to state s , the set $L(s)$ of atomic propositions that are valid in s .

Initial states

- ▶ $\iota_{\text{init}}(s)$ is the probability that DTMC \mathcal{D} starts in state s
- ▶ the set $\{s \in S \mid \iota_{\text{init}}(s) > 0\}$ are the possible **initial states**.

Paths in a DTMC

State graph

The *state graph* of DTMC \mathcal{D} is a digraph $G = (V, E)$ with V are the states of \mathcal{D} , and $(s, s') \in E$ iff $\mathbf{P}(s, s') > 0$.

Paths

Paths in \mathcal{D} are maximal (i.e., infinite) paths in its state graph. Thus, a path is an infinite sequence of states $s_0 s_1 s_2 \dots$ with $\mathbf{P}(s_i, s_{i+1}) > 0$ for all i . Let $\pi[i] = s_i$.

Let $\text{Paths}(\mathcal{D})$ denote the set of paths in \mathcal{D} , and $\text{Paths}^*(\mathcal{D})$ the set of finite prefixes thereof.

Direct successors and predecessors

$\text{Post}(s) = \{ s' \in S \mid \mathbf{P}(s, s') > 0 \}$ and $\text{Pre}(s) = \{ s' \in S \mid \mathbf{P}(s', s) > 0 \}$ are the set of direct successors and predecessors of s respectively. $\text{Post}^*(s)$ and $\text{Pre}^*(s)$ are the reflexive and transitive closure of Post and Pre .

Probability measure on DTMCs

Cylinder set

The *cylinder set* of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in \text{Paths}^*(\mathcal{D})$ is defined by:

$$\text{Cyl}(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

The cylinder set spanned by finite path $\hat{\pi}$ thus consists of all infinite paths that have prefix $\hat{\pi}$. Cylinder sets serve as basic events of the smallest σ -algebra on $\text{Paths}(\mathcal{D})$.

σ -algebra of a DTMC

The σ -algebra associated with DTMC \mathcal{D} is the smallest σ -algebra that contains all cylinder sets $\text{Cyl}(\hat{\pi})$ where $\hat{\pi}$ ranges over all finite path fragments in \mathcal{D} .

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define a probability space over its paths.

Intuition

For a given state s in DTMC \mathcal{D} :

- ▶ Sample space := set of all infinite paths starting in s
- ▶ Events := sets of infinite paths starting in s
- ▶ Basic events := cylinder sets
- ▶ Cylinder set of finite path $\hat{\pi}$:= set of all infinite continuations of $\hat{\pi}$

Probability measure on DTMCs

Cylinder set

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in \text{Paths}^*(\mathcal{D})$ is defined by:

$$\text{Cyl}(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Probability measure

Pr is the unique *probability measure* on the σ -algebra on $\text{Paths}(\mathcal{D})$ defined by:

$$\text{Pr}(\text{Cyl}(s_0 \dots s_n)) = \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 s_1 \dots s_n)$$

where $\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \leq i < n} \mathbf{P}(s_i, s_{i+1})$ for $n > 0$ and $\mathbf{P}(s_0) = 1$.

Example

Some events of interest

Let DTMC \mathcal{D} with (possibly infinite) state space S .

(Simple) reachability

Eventually reach a state in $\mathcal{G} \subseteq S$. Formally:

$$\Diamond \mathcal{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \mathcal{G} \}$$

Invariance, i.e., always stay in state in \mathcal{G} :

$$\Box \mathcal{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \pi[i] \in \mathcal{G} \} = \overline{\Diamond \mathcal{G}}$$

Constrained reachability

Or “reach-avoid” properties where states in $\mathcal{F} \subseteq S$ are forbidden:

$$\overline{\mathcal{F}} \cup \mathcal{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \mathcal{G} \wedge \forall j < i. \pi[j] \notin \mathcal{F} \}$$

Overview

1 Measurable space on DTMC paths

- Discrete-time Markov chains
- Probability measure on DTMC paths

2 Reachability probabilities

- Events on DTMC paths
- Characterising reachability probabilities
- Constrained reachability probabilities
- Relation to transient probabilities

More events of interest

Repeated reachability

Repeatedly visit a state in \mathcal{G} ; formally:

$$\Box \Diamond \mathcal{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \exists j \geq i. \pi[j] \in \mathcal{G} \}$$

Persistence

Eventually reach in a state in \mathcal{G} and always stay there; formally:

$$\Diamond \Box \mathcal{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \forall j \geq i. \pi[j] \in \mathcal{G} \}$$

Measurability

Measurability theorem

Events $\diamond G$, $\square G$, $\overline{F} \cup G$, $\square \diamond G$ and $\diamond \square G$ are measurable on any DTMC.

Proof:

To show this, every event will be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets! — in the σ -algebra on infinite paths in a DTMC.

Note that $\square G = \overline{\diamond \overline{G}}$ and $\diamond \square G = \overline{\square \diamond \overline{G}}$.

It remains to prove the measurability for the remaining three cases.

Proof for $\square \diamond G$

Proof for $\diamond G$

Which event (in our σ -algebra) does $\diamond G$ formally mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

$s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\diamond G = \bigcup_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

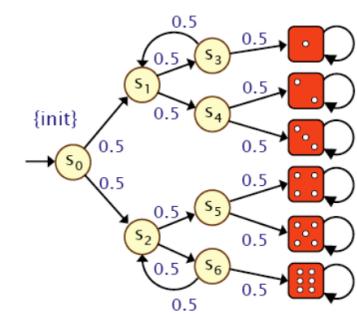
Thus $\diamond G$ is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

$$\begin{aligned} Pr(\diamond G) &= \sum_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} Pr(Cyl(s_0 \dots s_n)) \\ &= \sum_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 \dots s_n) \end{aligned}$$

A similar proof strategy applies to the case $\overline{F} \cup G$.

Reachability probabilities: Knuth's die



- ▶ Consider the event $\diamond 4$
- ▶ Using the previous theorem we obtain:

$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus 4^*) 4} \mathbf{P}(s_0 \dots s_n)$$

- ▶ This yields: $\mathbf{P}(s_0 s_2 s_5 4) + \mathbf{P}(s_0 s_2 s_6 s_2 s_5 4) + \dots$

$$\text{Or: } \sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2 (s_6 s_2)^k s_5 4)$$

$$\text{Or: } \frac{1}{8} \sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^k$$

$$\text{Geometric series: } \frac{1}{8} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{8} \cdot \frac{4}{3} = \frac{1}{6}$$

There is however an simpler way to obtain reachability probabilities!

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\mathcal{G} \subseteq S$.

Aim: determine $Pr(s \models \diamond \mathcal{G}) = Pr_s(\diamond \mathcal{G}) = Pr_s\{\pi \in \text{Paths}(s) \mid \pi \models \diamond \mathcal{G}\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s .

Characterisation of reachability probabilities

- Let variable $x_s = Pr(s \models \diamond \mathcal{G})$ for any state s
 - if \mathcal{G} is not reachable from s , then $x_s = 0$
 - if $s \in \mathcal{G}$ then $x_s = 1$
- For any state $s \in \text{Pre}^*(\mathcal{G}) \setminus \mathcal{G}$:

$$x_s = \underbrace{\sum_{t \in S \setminus \mathcal{G}} \mathbf{P}(s, t) \cdot x_t}_{\text{reach } \mathcal{G} \text{ via } t \in S \setminus \mathcal{G}} + \underbrace{\sum_{u \in \mathcal{G}} \mathbf{P}(s, u)}_{\text{reach } \mathcal{G} \text{ in one step}}$$

Linear equation system

Reachability probabilities as linear equation system

- Let $S_? = \text{Pre}^*(\mathcal{G}) \setminus \mathcal{G}$, the states that can reach \mathcal{G} by > 0 steps
- $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_?}$, the transition probabilities in $S_?$
- $\mathbf{b} = (b_s)_{s \in S_?}$, the probs to reach \mathcal{G} in 1 step, i.e., $b_s = \sum_{u \in \mathcal{G}} \mathbf{P}(s, u)$

Then: $\mathbf{x} = (x_s)_{s \in S_?}$ with $x_s = Pr(s \models \diamond \mathcal{G})$ is the **unique** solution of:

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{b} \quad \text{or} \quad (\mathbf{I} - \mathbf{A}) \cdot \mathbf{x} = \mathbf{b}$$

where \mathbf{I} is the identity matrix of cardinality $|S_?| \times |S_?|$.

Reachability probabilities: Knuth's die

- Consider the event $\diamond 4$
- Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1$$

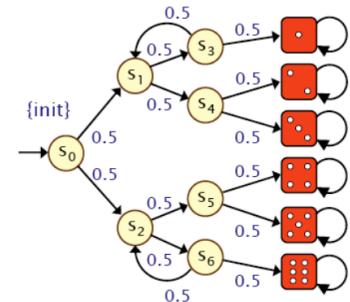
$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$

$$x_{s_0} = \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2}$$

$$x_{s_2} = \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6}$$

$$x_{s_5} = \frac{1}{2}x_5 + \frac{1}{2}x_4$$

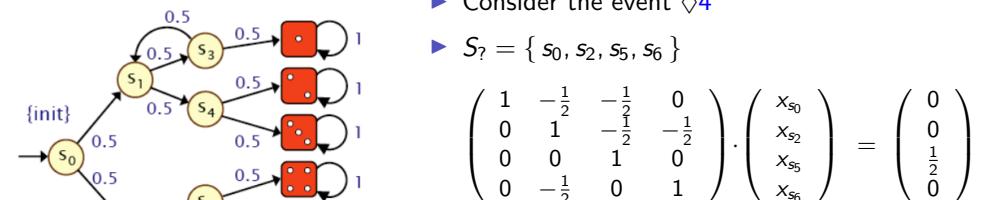
$$x_{s_6} = \frac{1}{2}x_{s_2} + \frac{1}{2}x_6$$



- Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}, x_{s_2} = \frac{1}{3}, x_{s_6} = \frac{1}{6}, \text{ and } x_{s_0} = \frac{1}{6}$$

Reachability probabilities: Knuth's die



- Consider the event $\diamond 4$

$$S_? = \{s_0, s_2, s_5, s_6\}$$

$$\begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_{s_0} \\ x_{s_2} \\ x_{s_5} \\ x_{s_6} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

- Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}, x_{s_2} = \frac{1}{3}, x_{s_6} = \frac{1}{6}, \text{ and } x_{s_0} = \frac{1}{6}$$

Constrained reachability probabilities

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\bar{F}, G \subseteq S$.

Aim: $Pr(s \models \bar{F} \cup G) = Pr_s(\bar{F} \cup G) = Pr_s\{\pi \in \text{Paths}(s) \mid \pi \models \bar{F} \cup G\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s .

Characterisation of constrained reachability probabilities

- Let variable $x_s = Pr(s \models \bar{F} \cup G)$ for any state s
 - if G is not reachable from s via \bar{F} , then $x_s = 0$
 - if $s \in G$ then $x_s = 1$
- For any state $s \in (\text{Pre}^*(G) \cap \bar{F}) \setminus G$:

$$x_s = \sum_{t \in S \setminus G} P(s, t) \cdot x_t + \sum_{u \in G} P(s, u)$$

Iteratively computing reachability probabilities

Theorem

The vector $\mathbf{x} = (Pr(s \models \bar{F} \cup G))_{s \in S?}$ is the *unique* solution of:

$$\mathbf{y} = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$$

with \mathbf{A} and \mathbf{b} as defined before.

Furthermore, let:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b} \quad \text{for } 0 \leq i.$$

Then:

- $\mathbf{x}^{(n)}(s) = Pr(s \models \bar{F} \cup \leq n G) \text{ for } s \in S?$
- $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \dots \leq \mathbf{x}$
- $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$

where $\bar{F} \cup \leq n G$ contains those paths that reach G via \bar{F} within n steps.

Remark

In the previous characterisation we basically set:

- $S_{=1} = G$
- $S_{=0} = \{s \in S \mid Pr(\bar{F} \cup G) = 0\}$
- $S? = S \setminus (S_{=0} \cup S_{=1})$

In fact any partition of S satisfying the following constraints will do:

- $G \subseteq S_{=1} \subseteq \{s \in S \mid Pr(\bar{F} \cup G) = 1\}$
- $\bar{F} \setminus G \subseteq S_{=0} \subseteq \{s \in S \mid Pr(\bar{F} \cup G) = 0\}$
- $S? = S \setminus (S_{=0} \cup S_{=1})$

In practice, $S_{=0}$ and $S_{=1}$ should be chosen as *large* as possible, as then $S?$ is of minimal size, and the *smallest* linear equation system needs to be solved.

Thus $S_{=0} = \{s \in S \mid Pr(\bar{F} \cup G) = 0\}$ and $S_{=1} = \{s \in S \mid Pr(\bar{F} \cup G) = 1\}$.

These sets can easily be determined in linear time by a *graph analysis*.

Proof

Remark

Iterative algorithms to compute \mathbf{x}

There are various algorithms to compute $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b} \quad \text{for } 0 \leq i.$$

The **Power method** computes vectors $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ and aborts if:

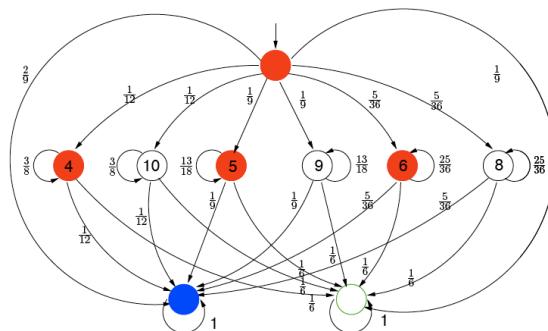
$$\max_{s \in S} |x_s^{(n+1)} - x_s^{(n)}| < \varepsilon \quad \text{for some small tolerance } \varepsilon$$

This technique guarantees **convergence**.

Alternative iterative techniques: e.g., Jacobi or Gauss-Seidel, successive overrelaxation (SOR). Details of these techniques fall outside the scope of these lecture series.

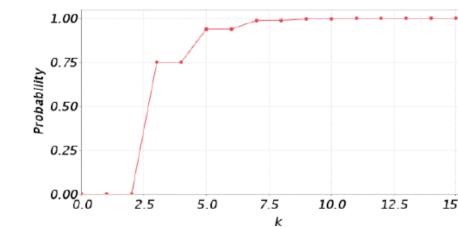
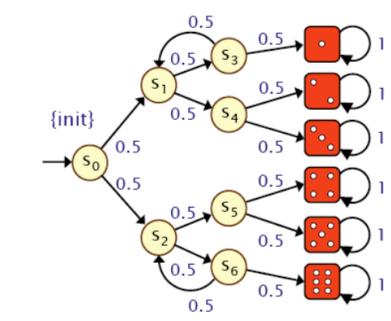
Example: Craps game

- ▶ $Pr(\text{start} \models R \cup^{<n} G)$
- ▶ $S_0 = \{8, 9, 10, \text{lost}\}$
- ▶ $S_1 = \{\text{won}\}$
- ▶ $S_? = \{\text{start}, 4, 5, 6\}$



Example: Knuth's die

- ▶ Let $G = \{1, 2, 3, 4, 5, 6\}$
- ▶ Then $Pr(s_0 \models \Diamond G) = 1$
- ▶ And $Pr(s_0 \models \Diamond^{<k} G)$ for $k \in \mathbb{N}$ is given by:

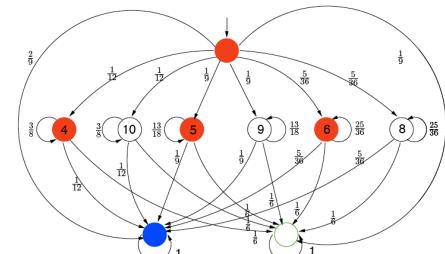


Example: Craps game

- ▶ $\text{start} < 4 < 5 < 6$

$$\mathbf{A} = \frac{1}{36} \begin{pmatrix} 0 & 3 & 4 & 5 \\ 0 & 27 & 0 & 0 \\ 0 & 0 & 26 & 0 \\ 0 & 0 & 0 & 25 \end{pmatrix}$$

$$\mathbf{b} = \frac{1}{36} \begin{pmatrix} 8 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$



$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A} \mathbf{x}^{(i)} + \mathbf{b} \quad \text{for } 0 \leq i < n.$$

Example: Craps game

$$x^{(2)} = \underbrace{\frac{1}{36} \begin{pmatrix} 0 & 3 & 4 & 5 \\ 0 & 27 & 0 & 0 \\ 0 & 0 & 26 & 0 \\ 0 & 0 & 0 & 25 \end{pmatrix}}_A \cdot \underbrace{\frac{1}{36} \begin{pmatrix} 8 \\ 3 \\ 4 \\ 5 \end{pmatrix}}_{x^{(1)}} + \underbrace{\frac{1}{36} \begin{pmatrix} 8 \\ 3 \\ 4 \\ 5 \end{pmatrix}}_b = \left(\frac{1}{36}\right)^2 \begin{pmatrix} 338 \\ 189 \\ 248 \\ 305 \end{pmatrix}$$

Recall: transient probability distribution

Transient distribution

$\mathbf{P}^n(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s .

The probability of DTMC \mathcal{D} being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t) =$$

The function $\Theta_n^{\mathcal{D}}$ is the *transient state distribution* at epoch n of DTMC \mathcal{D} .

When considering $\Theta_n^{\mathcal{D}}$ as vector $(\Theta_n^{\mathcal{D}})_{t \in S}$ we have:

$$\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \underbrace{\mathbf{P} \cdot \mathbf{P} \cdot \dots \cdot \mathbf{P}}_{n \text{ times}} = \iota_{\text{init}} \cdot \mathbf{P}^n.$$

Computation: $\Theta_0^{\mathcal{D}} = \iota_{\text{init}}$ and $\Theta_{n+1}^{\mathcal{D}} = \Theta_n^{\mathcal{D}} \cdot \mathbf{P}$ for $n \geq 0$.

Reachability probability = transient probabilities

Aim

Compute $\Pr(\Diamond^{\leq n} G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G , then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s .

Lemma

$$\underbrace{\Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}} = \underbrace{\Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}[G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_G^n}_{\text{in } \mathcal{D}[G]} = \Theta_n^{\mathcal{D}[G]}$$

Constrained reachability = transient probabilities

Aim

Compute $\Pr(\overline{F} \cup^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

Lemma

$$\underbrace{\Pr(\overline{F} \cup^{\leq n} G)}_{\text{reachability in } \mathcal{D}} = \underbrace{\Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}[F \cup G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_{F \cup G}^n}_{\text{in } \mathcal{D}[F \cup G]} = \Theta_n^{\mathcal{D}[F \cup G]}$$

Example: Craps game