

Modeling and Verification of Probabilistic Systems

Lecture 4: Qualitative Properties

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://www-i2.informatik.rwth-aachen.de/i2/mvps11/>

April 26, 2011

Qualitative Properties

1 Reachability probabilities

2 What are qualitative properties?

3 Fairness theorem

4 Determining almost sure properties

- Preliminaries
- Long run theorem
- Reachability, repreated reachability and persistence
- Quantitative repeated reachability and persistence

5 Summary

Overview

- 1 Reachability probabilities
- 2 What are qualitative properties?
- 3 Fairness theorem
- 4 Determining almost sure properties
 - Preliminaries
 - Long run theorem
 - Reachability, repreated reachability and persistence
 - Quantitative repeated reachability and persistence
- 5 Summary

Qualitative Properties

Reachability probabilities

Recapitulating reachability probabilities

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\mathcal{G} \subseteq S$.

Aim: determine $Pr(s \models \diamond \mathcal{G}) = Pr_s\{\pi \in \text{Paths}(s) \mid \pi \models \diamond \mathcal{G}\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s .

Approach

1. Determine by a graph analysis $S_{=0} = \{s \in S \mid Pr(s \models \diamond \mathcal{G}) = 0\}$ and $S_{=1} = \{s \in S \mid Pr(s \models \diamond \mathcal{G}) = 1\}$
2. Introduce a variable x_s for any state $s \in S$: $S = S \setminus (S_{=0} \cup S_{=1})$
3. Solve a linear equation system $\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{b}$
4. using one of your favourite techniques, e.g., iterative methods
5. Intermediate results $\mathbf{x}^{(i)}$ represent the vector $(Pr(s \models \diamond^{\leq i} \mathcal{G}))_{s \in S}$
6. Alternative: reduce reachability probabilities to transient distribution.

Overview

- 1 Reachability probabilities
- 2 What are qualitative properties?
- 3 Fairness theorem
- 4 Determining almost sure properties
 - Preliminaries
 - Long run theorem
 - Reachability, repreated reachability and persistence
 - Quantitative repeated reachability and persistence
- 5 Summary

Aim of today's lecture

Take-home message

For **finite** DTMCs, qualitative properties do only depend on their state graph and **not** on the transition probabilities! For infinite DTMCs, this does not hold.

Remark

In the following we will concentrate on **almost sure** events, i.e., events E with $Pr(E) = 1$. This suffices, as $Pr(E) > 0$ if and only if not $Pr(\bar{E}) = 1$.

Qualitative properties

Quantitative properties

Comparing the probability of an event such as $\square G$, $\diamond \square G$ and $\square \diamond G$ with a threshold $\sim p$ with $p \in (0, 1)$ and \sim a binary comparison operator $(=, <, \leq, \geq, >)$ yields a **quantitative property**.

Example quantitative properties

$$Pr(s \models \diamond \square G) > \frac{1}{2} \quad \text{or} \quad Pr(s \models \diamond^{\leq n} G) \leq \frac{\pi}{5}$$

Qualitative properties

Comparing the probability of an event such as $\square G$, $\diamond \square G$ and $\square \diamond G$ with a threshold > 0 or $= 1$ yields a **qualitative property**. Any event E with $Pr(E) = 1$ is called **almost surely**.

Example qualitative properties

$$Pr(s \models \diamond \square G) > 0 \quad \text{or} \quad Pr(s \models \diamond^{\leq n} G) = 1$$

Overview

- 1 Reachability probabilities
- 2 What are qualitative properties?
- 3 Fairness theorem
- 4 Determining almost sure properties
 - Preliminaries
 - Long run theorem
 - Reachability, repreated reachability and persistence
 - Quantitative repeated reachability and persistence
- 5 Summary

Fairness

Fairness theorem

Let \mathcal{D} be a (possibly infinite) DTMC and s, t states in \mathcal{D} . Then:

$$Pr(s \models \square \diamond t) = Pr(s \models \bigwedge_{u \in Post^*(t)} \square \diamond u).$$

When infinite branching, this is an infinitary conjunction (countable intersection).

In particular, if t is visited infinitely often almost surely, then this property carries over to any successor u of t .

Corollary

For any state s in a (possibly infinite) DTMC we have:

$$Pr(s \models \bigwedge_{t \in S} \bigwedge_{u \in Post^*(t)} (\square \diamond t \Rightarrow \square \diamond u)) = 1.$$

Proof (2)

Claim

Let \mathcal{D} be a (possibly infinite) DTMC and s, t states in \mathcal{D} . Then:

$$Pr(s \models \square \diamond t) = Pr_s \left(\bigwedge_{\hat{\pi} \in Paths^*(t)} \square \diamond \hat{\pi} \right)$$

where $\square \diamond \hat{\pi}$ denotes the set of paths π such that $\hat{\pi}$ occurs infinitely in π .

Proof:

This claim is proven in three steps:

1. For any $\hat{\pi} \in Paths^*(t)$, it holds $Pr(s \models \square \diamond t) = Pr(s \models \diamond \hat{\pi})$.
2. For any $\hat{\pi} \in Paths^*(t)$, it holds $Pr(\square \diamond t \wedge \diamond \square \neg \hat{\pi}) = 0$.
3. $Pr(\square \diamond t \wedge \bigwedge_{\hat{\pi} \in Paths^*(t)} \diamond \square \neg \hat{\pi}) = 0$.

Proof (1)

Fairness theorem

Let \mathcal{D} be a (possibly infinite) DTMC and s, t states in \mathcal{D} . Then:

$$Pr(s \models \square \diamond t) = Pr(s \models \bigwedge_{u \in Post^*(t)} \square \diamond u).$$

This result follows directly from the following claim that we will prove below.

Claim

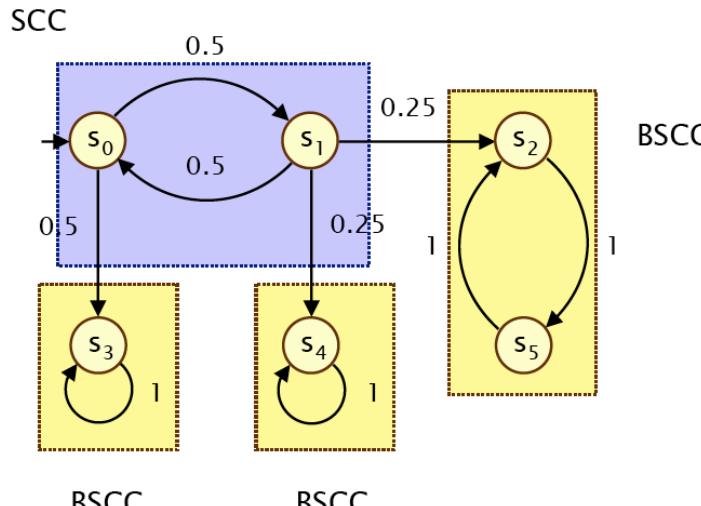
The probability to infinitely often visit state t equals the probability to take any finite path $\hat{\pi}$ emanating from state t infinitely often.

Proof (3)

Overview

- 1 Reachability probabilities
- 2 What are qualitative properties?
- 3 Fairness theorem
- 4 Determining almost sure properties
 - Preliminaries
 - Long run theorem
 - Reachability, repeated reachability and persistence
 - Quantitative repeated reachability and persistence
- 5 Summary

Example



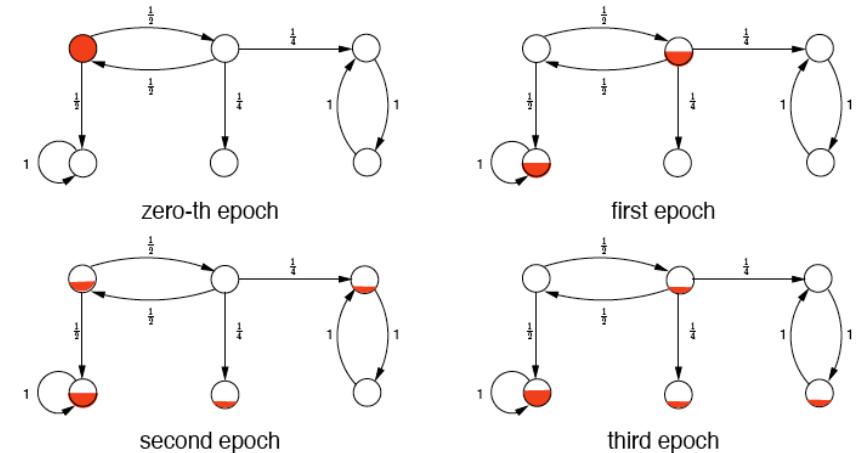
Graph notions

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a (possibly infinite) DTMC.

Strongly connected component

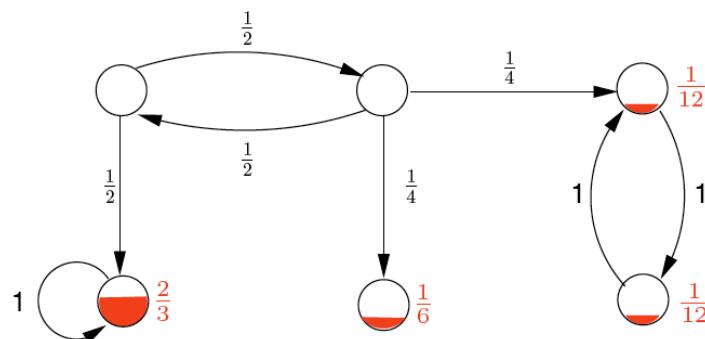
- $T \subseteq S$ is *strongly connected* if for any $s, t \in T$, states s and $t \in T$ are mutually reachable via edges in T .
- T is a *strongly connected component* (SCC) of \mathcal{D} if it is strongly connected and no proper superset of T is strongly connected.
- SCC T is a *bottom SCC* (BSCC) if no state outside T is reachable from T , i.e., for any state $s \in T$, $\mathbf{P}(s, T) = \sum_{t \in T} \mathbf{P}(s, t) = 1$.
- Let $BSCC(\mathcal{D})$ denote the set of BSCCs of DTMC \mathcal{D} .

Evolution of an example DTMC



Which states have a probability > 0 when repeating this on the long run?

On the long run



The probability mass on the long run is only left in BSCCs.

Fundamental result

Long-run theorem

For each state s of a finite Markov chain \mathcal{D} :

$$Pr_s\{\pi \in \text{Paths}(s) \mid \text{inf}(\pi) \in \text{BSCC}(\mathcal{M})\} = 1.$$

Intuition

Almost surely any finite DTMC eventually reaches a BSCC and visits all its states infinitely often.

Measurability

Lemma

For any state s in (possibly infinite) DTMC \mathcal{D} :

$$\{\pi \in \text{Paths}(s) \mid \text{inf}(\pi) \in \text{BSCC}(\mathcal{D})\} \text{ is measurable}$$

where $\text{inf}(\pi)$ is the set of states that are visited infinitely often along π .

Proof:

1. For BSCC T , $\{\pi \in \text{Paths}(s) \mid \text{inf}(\pi) = T\}$ is measurable as:

$$\{\pi \in \text{Paths}(s) \mid \text{inf}(\pi) = T\} = \bigcap_{t \in T} \square \diamond t \cap \diamond \square T.$$

2. As $\text{BSCC}(\mathcal{D})$ is countable, we have:

$$\{\pi \in \text{Paths}(s) \mid \text{inf}(\pi) \in \text{BSCC}(\mathcal{D})\} = \bigcup_{TS \in \text{BSCC}(\mathcal{D})} \bigcap_{t \in T} \square \diamond t \wedge \diamond \square T.$$

Fundamental result

Long-run theorem

For each state s of a finite Markov chain \mathcal{D} :

$$Pr_s\{\pi \in \text{Paths}(s) \mid \text{inf}(\pi) \in \text{BSCC}(\mathcal{M})\} = 1.$$

Proof:

- As \mathcal{D} is finite, $\text{inf}(\pi)$ is strongly connected, i.e., part of SCC T , say.
- Hence, $\sum_{\text{SCC } T} Pr_s\{\pi \in \text{Paths}(s) \mid \text{inf}(\pi) = T\} = 1$ (*)
- Assume $Pr_s\{\pi \in \text{Paths}(s) \mid \text{inf}(\pi) = T\} > 0$.
- By the fairness theorem, almost all paths π with $\text{inf}(\pi) = T$ fulfill

$$\text{Post}^*(T) = \text{Post}^*(\text{inf}(\pi)) \subseteq \text{inf}(\pi) = T.$$

- Hence, $T = \text{Post}^*(T)$, i.e., T is a BSCC. The claim follows from (*).

Zeroconf example

Aim of the Zeroconf protocol

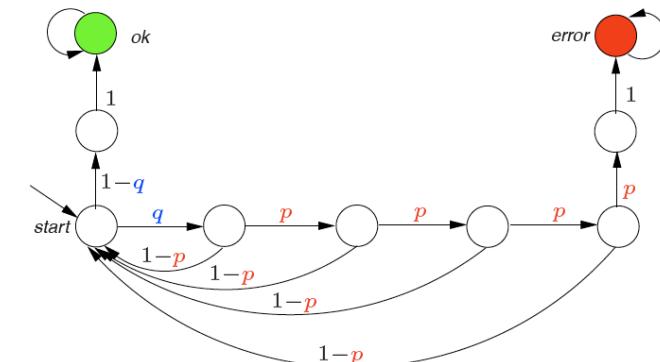
- ▶ IPv4 is aimed at plug-and-play networks for domestic appliances.
- ▶ New devices must get a unique IP address in an automated way.
- ▶ This is done by the IPv4 zeroconf protocol (proposed by IETF).

Basic functioning of the Zeroconf protocol

1. Randomly select one of the 65,024 possible addresses.
2. Loop: as long as number of sent probes $< n$.
3. Broadcast probe "who is using my current address?"
4. Receive reply? Goto step 1.
5. Receive no reply within $r > 0$ time units, then
 - 5.1 number of sent probes $= n$? Exit, and use selected address.
 - 5.2 number of sent probes $< n$? Goto step 2.

Let p be probability that no reply is received on a probe.

Zeroconf example



p = probability of message loss; q = probability of selecting occupied address

By the long-run theorem, the probability of acquiring an address infinitely often is zero.

Almost sure reachability

Recall: an absorbing state in a DTMC is a state with a self-loop with probability one.

Almost sure reachability theorem

For finite DTMC with state space S , $s \in S$ and $\mathcal{G} \subseteq S$ a set of absorbing states:

$$\Pr(s \models \diamond \mathcal{G}) = 1 \text{ iff } s \in S \setminus \text{Pre}^*(S \setminus \text{Pre}^*(\mathcal{G})).$$

Note: $S \setminus \text{Pre}^*(S \setminus \text{Pre}^*(\mathcal{G}))$ are states that cannot reach states from which \mathcal{G} cannot be reached.

Proof:

Show that both sides of the equivalence are equivalent to $\text{Post}^*(t) \cap \mathcal{G} \neq \emptyset$ for each state $t \in \text{Post}^*(s)$. Rather straightforward.

Computing almost sure reachability properties

Aim:

For finite DTMC \mathcal{D} and $\mathcal{G} \subseteq S$, determine $\{s \in S \mid \Pr(s \models \diamond \mathcal{G}) = 1\}$.

Algorithm

1. Make all states in \mathcal{G} absorbing yielding $\mathcal{D}[\mathcal{G}]$.
2. Determine $S \setminus \text{Pre}^*(S \setminus \text{Pre}^*(\mathcal{G}))$ by a graph analysis:
 - 2.1 do a backward search from \mathcal{G} in $\mathcal{D}[\mathcal{G}]$ to determine $\text{Pre}^*(\mathcal{G})$.
 - 2.2 followed by a backward search from $S \setminus \text{Pre}^*(\mathcal{G})$ in $\mathcal{D}[\mathcal{G}]$.

This yields a time complexity which is linear in the size of the DTMC \mathcal{D} .

Repeated reachability

Almost sure repeated reachability theorem

For finite DTMC with state space S , $G \subseteq S$, and $s \in S$:

$$\Pr(s \models \Box \Diamond G) = 1 \text{ iff for each BSCC } T \subseteq \text{Post}^*(s). T \cap G \neq \emptyset.$$

Proof:

Immediate consequence of the long-run theorem.

Almost sure persistence

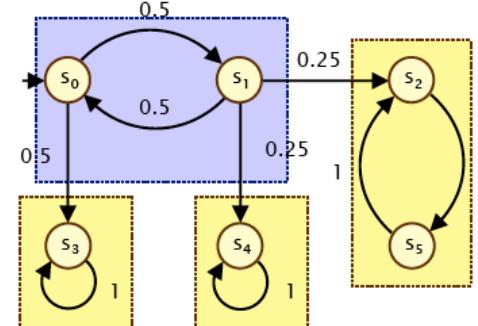
Almost sure persistence theorem

For finite DTMC with state space S , $G \subseteq S$, and $s \in S$:

$$\Pr(s \models \Diamond \Box G) = 1 \text{ if and only if } T \subseteq G \text{ for any BSCC } T \subseteq \text{Post}^*(s)$$

Example:

$$\{s_2, s_3, s_4, s_5\}$$



Almost sure repeated reachability

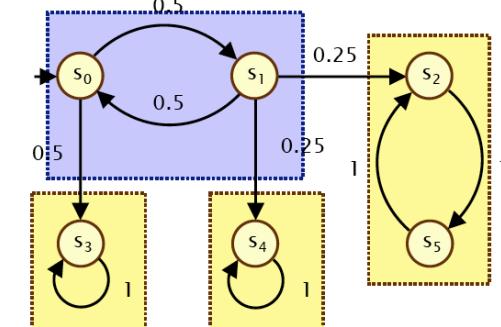
Almost sure repeated reachability theorem

For finite DTMC with state space S , $G \subseteq S$, and $s \in S$:

$$\Pr(s \models \Box \Diamond G) = 1 \text{ iff for each BSCC } T \subseteq \text{Post}^*(s). T \cap G \neq \emptyset.$$

Example:

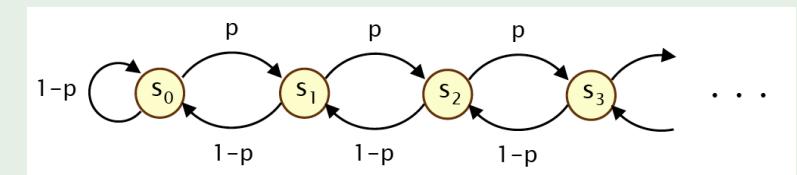
$$B = \{s_3, s_4, s_5\}$$



A remark on infinite Markov chains

Graph analysis for infinite DTMCs does not suffice!

Consider the following infinitely countable DTMC, known as **random walk**:



The value of rational probability p **does** affect qualitative properties:

$$\Pr(s \models \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ < 1 & \text{if } p > \frac{1}{2} \end{cases} \text{ and}$$

$$\Pr(s \models \Box \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ 0 & \text{if } p > \frac{1}{2} \end{cases}$$

Quantitative properties

Quantitative repeated reachability theorem

For finite DTMC with state space S , $\mathcal{G} \subseteq S$, and $s \in S$:

$$Pr(s \models \square \diamond \mathcal{G}) = Pr(s \models \diamond U)$$

where U is the union of all BSCCs T with $T \cap \mathcal{G} \neq \emptyset$.

Quantitative repeated reachability theorem

For finite DTMC with state space S , $\mathcal{G} \subseteq S$, and $s \in S$:

$$Pr(s \models \diamond \square \mathcal{G}) = Pr(s \models \diamond U)$$

where U is the union of all BSCCs T with $T \subseteq \mathcal{G}$.

Remark

Thus probabilities for $\square \diamond \mathcal{G}$ and $\diamond \square \mathcal{G}$ are reduced to **reachability probabilities**. These can be computed by solving a linear equation system.

Overview

1 Reachability probabilities

2 What are qualitative properties?

3 Fairness theorem

4 Determining almost sure properties

- Preliminaries
- Long run theorem
- Reachability, repeated reachability and persistence
- Quantitative repeated reachability and persistence

5 Summary

Example

Summary

- ▶ Executions of a DTMC are strongly fair with respect to all probabilistic choices.
- ▶ A finite DTMC almost surely ends up in a BSCC on the long run.
- ▶ Almost sure reachability = double backward search.
- ▶ Almost sure $\square \diamond \mathcal{G}$ and $\diamond \square \mathcal{G}$ properties can be checked by BSCC analysis and reachability.
- ▶ Probabilities for $\square \diamond \mathcal{G}$ and $\diamond \square \mathcal{G}$ reduce to reachability probabilities.

Take-home message

For **finite** DTMCs, qualitative properties do only depend on their state graph and **not** on the transition probabilities! For infinite DTMCs, this does not hold.