Probabilistic Computation Tree Logic

Modeling and Verification of Probabilistic Systems

Lecture 5: Probabilistic Computation Tree Logic

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/mvpsi1/

May 2, 2011

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Probabilistic Computation Tree Logic PCTL Syntax
Overview

@ PCTL Syntax

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/36

Probabilistic Computation Tree Logic

Overview

@ PCTL Syntax
© PCTL Semantics

© PCTL Model Checking

@ Complexity

© Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/36
Probabilistic Computation Tree Logic PCTL Syntax

Probabilistic Computation Tree Logic

|
» PCTL is a language for formally specifying properties over DTMCs.
» It is a branching-time temporal logic based on CTL.

» Formula interpretation is Boolean, i.e., a state satisfies a formula or
not.
» The main operator is P;(y)

» where ¢ constrains the set of paths and J is a threshold on the
probability.
» it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/36

http://www-i2.informatik.rwth-aachen.de/i2/mvps11/

Probabilistic Computation Tree Logic PCTL Syntax Probabilistic Computation Tree Logic PCTL Syntax

DTMCs — A transition system perspective PCTL syntax [Hansson & Jonsson, 1994]
Discrete-time Markov chain Probabilistic Computation Tree Logic: Syntax
A DTMC D is a tuple (S, P, i, AP, L) with: PCTL consists of state- and path-formulas.

» S is a countable nonempty set of states » PCTL state formulas over the set AP obey the grammar:

» P:S5xS — [0,1], transition probability function s.t. >, P(s,s’) =1
0.1 « Pls.) dJ:::true)a‘Cbl/\Cbz‘ —\CD‘]P’J(cp)

> L - S — [0, 1], the initial distribution with Y ¢,.(s) =1
seS
» AP is a set of atomic propositions. where a € AP, ¢ is a path formula and J C [0,1], J# @ is a
» L:S — 24P the labeling function, assigning to state s, the set L(s) non-empty interval.
of atomic propositions that are valid in s. » PCTL path formulae are formed according to the following grammar:

@ = OF | UG | &U 0,

> Liie(S) is the probability that DTMC D starts in state s where ®, ®1, and ®, are state formulae and n € IN.

> the set {s € S| tinic(s) > 0} are the possible initial states. Abbreviate Pig0.5)(¢) by Pos(i) and Pio13(¢) by Pso(e).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/36

Probabilistic Computation Tree Logic Overview

|
PCTL state formulas over the set AP obey the grammar:

® = true ‘ a ‘ O A Dy ‘ - ’ P,(v)

PCTL S ti
where a € AP, ¢ is a path formula and J C [0,1], J # D is a o emantics

non-empty interval.

PCTL path formulae are formed according to the following grammar:

o = O) &1 Ud, ‘ ®;US"d, wheren € IN.

Intuitive semantics

> 95182... = ¢ US" W if & holds until ¥ holds within n steps.
» s = Py(¢) if probability that paths starting in s fulfill ¢ lies in J.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Semantics of P-operator Derived operators

..... O = trueU P

OS'd = trueU "o

| Pep(OP) = P p(0—P)

> s =Py(p) if:
> the probability of all paths starting in s fulfilling ¢ lies in J.

> Example: s = P_;(0a) if
2

<n _ <n
N . P(p,q)(03"®) = Ppi_g,1-5(03"=®)
> the probability to reach an a-labeled state from s exceeds 3.
» Formally:

» s =Py(p) if and only if Pre{m € Paths(s) |7 = ¢ } € J.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/36 Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36
y - .

Correctness of Knuth’s die Example properties

» Transient probabilities to be in goal state at the fourth epoch:

P> 0.02 <<>:4 goa/)

{init}

» With probability > 0.92, a goal state is reached legally:

]P’}O.gz (‘! illega/ U goal)

» ... in maximally 137 steps: P> 0.2 (—illegal US™7 goal
Correctness of Knuth’s die y P (& goal)

]P):%(O].) AN P_ (<>2) A P:%(O:’)) VAN PZé(<>4) VAN P:%(OS) A\]P)=é(<>6)

> ... once there, remain there almost surely for the next 31 steps:
1
3

P00 (— illegal U< P_y(01°3Y goal))

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL semantics (1) PCTL semantics (2)

D, s = & if and only if state-formula ® holds in state s of (possibly Satisfaction relation for path formulas

infinite) DTMC D. As D is known from the context we simply write s = ®. Let 7 = sp51 5 ... be an infinite path in (possibly infinite) DTMC D.

" . " Recall that 7[i] = s; denotes the (i+1)-st state along .
Satisfaction relation for state formulas

The satisfacti lati is defined for state f las by:
The satisfaction relation |= is defined for PCTL state formulas by: e satisfaction relation |= is defined for state formulas by
T E O iff s1 =@
TEPUWV iff 3k>0.(n[k]EV AVO<i<k.7[i] =)

TlEOUSTY iff 3k>0.(k<n ATkl E VA
VO < i< k.fi] = ®)

skEa iff ae L(s)

sE - iff not (s = @)
sEPAV ff (sE®)and (s =V)
sEPp) iff Pisl=y)eJ

where Pr(s = @) = Prs{m € Paths(s) | 7 = ¢ }

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/36 Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/36
Probabilistic Computation Tree Logic PCTL Semantics Probabilistic Computation Tree Logic PCTL Semantics
Examples Measurability

PCTL measurability

For any PCTL path formula ¢ and state s of DTMC D,
the set { m € Paths(s) | m = ¢ } is measurable.

Proof (sketch):

Three cases:

1. O¢:
» cylinder sets constructed from paths of length one.
2. dUS Y,

» (finite number of) cylinder sets from paths of length at most n.

3. UV
» countable union of paths satisfying ® US" W for all n > 0.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/36

Overview PCTL model checking

PCTL model checking problem

Input: a finite DTMC D = (S, P, 45, AP, L), state s € S, and
PCTL state formula ¢

Output: vyes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ¢ do:

1. Compute the satisfaction set Sat(®) = {se€ S|s = }.
2. This is done recursively by a bottom-up traversal of ®'s parse tree.

» The nodes of the parse tree represent the subformulae of ®.
» For each node, i.e., for each subformula W of ®, determine Sat(V).
» Determine Sat(W) as function of the satisfaction sets of its children:

e.g., Sat(V1 A W) = Sat(W1) N Sat(V,) and Sat(—V) = S\ Sat(V).
3. Check whether state s belongs to Sat(®).

© PCTL Model Checking

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/36
Probabilistic Computation Tree Logic PCTL Model Checking Probabilistic Computation Tree Logic PCTL Model Checking
Example Core model checking algorithm

Propositional formulas

Sat(-) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = {se S|ae€lL(s)}, forany ac AP
Sat(P AV) = Sat(P) N Sat(V)
) = S\ Sat(®).

Probabilistic operator P

In order to determine whether s € Sat(IP,()), the probability Pr(s =)
for the event specified by ¢ needs to be established. Then

Sat(P(¢)) = {seS|Prsl=¢) e/}

Let us consider the computation of Pr(s |=) for all possible .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Probabilistic Computation Tree Logic PCTL Model Checking

The next-step operator

|
Recall that: s =P,(O @) if and only if Pr(s = O ®) € J.

Lemma

Prs EOQ®) = Xocsa(o)P(s,s).

Algorithm

Considering the above equation for all states simultaneously yields:

(Pr(s):OCD))SeS = P-bg

with by the characteristic vector of Sat(®), i.e., be(s) = 1 iff s € Sat(P).

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Probabilistic Computation Tree Logic PCTL Model Checking

Bounded until (1)

|
Recall that: s =P, (¢ US" V) if and only if Pr(s = ®US"W) € J.

Lemma
Let S—y = Sat(V), S—o = S\ (Sat(P) U Sat(V)), and S; = S\ (5= U S=1). Then:

1 if s e 5:1

0 if s e S
Ps=dUS"V) = { 0 if s € S; A n=0

Z P(s,s') - Pr(s' = ®US"" 1 W) otherwise

s'eS

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Probabilistic Computation Tree Logic PCTL Model Checking

Example

Consider DTMC:

1 fail) and PCTL-formula:

P>0.9 (O (—try V succ))

0.01 tsucc)
1. Sat(—try V succ) = (S)\ Sat(try)) U Sat(succ) = {sp, 52,53}
2. We know: (Pr(s = O®)),.s = P-be where d = —try v succ
3. Applying that to this example yields:

0 1 0 0 1 0
0 0.01 0.01 0.98 0 0.99
(PAsEO®).s = | 1 o o o T 1
0o o0 0 1 1 1
4. Thus: Sat(P>0.0(O (—try V succ)) = {s1,5,53}.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/36

Probabilistic Computation Tree Logic PCTL Model Checking

Bounded until (2)

Let S_; = Sat(V), S_o = S\ (Sat(®) U Sat(V)), and S; = S\ (S_o U S_1). Then:

1 if s € 5:1
0 if se S_g

Pr(s = ®US"V) = { 0 if s € S A n=0
Z P(s,s')- Pr(s' = ®US""1 W) otherwise

s’eS

Algorithm

. Let P v be the probability matrix of D[S—o U S5—;1].

. Then (Pr(s = ® USO \IJ))ses = by

- And (Pr(s E ® USH! \IJ))Ses = Poy - (Pr(s E ®US V))
. This requires n matrix-vector multiplications in total.

seS”

A W NN =

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems PLYE

Bounded until (3) Example

Algorithm

Let Py v be the probability matrix of D[S—o U S—4].
Then (Pr(s | o USO \U))Ses = by
And (Pr(s |E ®USTI)) g = Poy - (Pris | @US'Y))

This requires n matrix-vector multiplications in total.

seS”

1. In terms of matrix powers: (Pr(s = ®US"W))__o = P -by.
» Computing Pg , in log, n steps is inefficient due to fill-in.
» That is to say, Pg y is much less sparse than Po y.
2. ngw -by = (Pr(s |: O=" \U))ses? in D[Sz() U 5:1].
» Where O°W =V and O W = O (O V).
» This thus amounts to a transient analysis in DTMC D[S_o U S5_4].

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems / Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/36

Probabilistic Computation Tree Logic PCTL Model Checking Probabilistic Computation Tree Logic PCTL Model Checking
Until Example

|
Recall that: s =P, (® U W) if and only if P(s EdU W) € J.

Algorithm

1. Determine S—1 = Sat(P=1(® U V)) by a graph analysis.
2. Determine S—g = Sat(P_o(® U W)) by a graph analysis.

3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.

2. Reduces the number of variables in the linear equation system.

3. Gives exact results for the states in S—; and S—¢ (i.e., no round-off).
4

. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/36 Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/36

Probabilistic Computation Tree Logic Complexity

Overview Time complexity

Let |®| be the size of @, i.e., the number of logical and temporal operators in .

Time complexity of PCTL model checking

For finite DTMC D and PCTL state-formula ®, the PCTL model-checking
problem can be solved in time

O(poly(size(D)) * Nmax * |¢|)

Q@ Complexity

where nmax = max{n| VU "y, occurs in ® } with and npax = 1 if @
does not contain a bounded until-operator.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 30/36
Time complexity Example: Crowds protocol
Time complexity of PCTL model checking
. } Security: Crowds protocol Reiter & Rubin, 1998
For finite DTMC D and PCTL state-formula ¢, the PCTL model-checking d g [Reiter —]

problem can be solved in time » A protocol for anonymous web browsing (variants: mCrowds,

BT-Crowds)
» Hide user’'s communication by random routing within a crowd
> sender selects a crowd member randomly using a uniform distribution

> selected router flips a biased coin:
Proof (sketch)

> with probability 1 — p: direct delivery to final destination

O(poly(size(D)) - Nmax - |P]).

1. For each node in the parse tree, a model-checking is performed; this > otherwise: select a next router randomly (“”'_formb_')

yields a linear complexity in |®|. > once a routing path has been established, use it until crowd changes
2. The worst-case operator is (unbounded) until. > Rebuild routing paths on crowd changes

2.1 Determining S_o and S_; can be done in linear time. » Property: Crowds protocol ensures “probable innocence™:

2.2 Direct methods to solve linear equation systems are in ©(|S;[3). > probability real sender is discovered < 3 if N > —21-(c+1)
3. Strictly speaking, US" could be more expensive for large n. » where N is crowd’s size and ¢ is number of corrupt crowd members

But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Probabilistic Computation Tree Logic Complexity

State space growth

state space size

T
"]
|
[~
108 —
— 1 5
|~ | Y
] | L—] =1
Ead <
L~ ‘ |
— P
fo'si —
4 | ol
10 &=
102
number pf protocol funs
I) o < 0 o) o © 0
o o < @ <

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Probabilistic Computation Tree Logic Summary
Overview
© Summary
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/36

Probabilistic Computation Tree Logic Complexity

Some practical verification times

verification time (in ms)

10°

104 EEE@%EE% =]
b ———" 1 Crowds protocol®TMG) ||
O] 1]
: hé//’// I\gdo ised miitex (PTMC)
0

510°
1108
15108
2108
2510°
3108
3.510°

» command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.

» PCTL formula P<,(Qobs) where obs holds when the sender’s id is detected.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/36
Probabilistic Computation Tree Logic Summary
Summary

|
PCTL is a variant of CTL with operator P,(¢).

Sets of paths fulfilling PCTL path-formula ¢ are measurable.

PCTL model checking is performed by a recursive descent over ®.

The next operator amounts to a single matrix-vector multiplication.

vV Vv v Y

The bounded-until operator US” amounts to n matrix-vector
multiplications.

» The until-operator amounts to solving a linear equation system.

» The worst-case time complexity is polynomial in the size of the
DTMC and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/36

	PCTL Syntax
	PCTL Semantics
	PCTL Model Checking
	Complexity
	Summary

