

Modeling and Verification of Probabilistic Systems

Lecture 5: Probabilistic Computation Tree Logic

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://www-i2.informatik.rwth-aachen.de/i2/mvps11/>

May 2, 2011

Overview

1 PCTL Syntax

2 PCTL Semantics

3 PCTL Model Checking

4 Complexity

5 Summary

Overview

1 PCTL Syntax

2 PCTL Semantics

3 PCTL Model Checking

4 Complexity

5 Summary

Probabilistic Computation Tree Logic

- ▶ PCTL is a language for formally specifying properties over DTMCs.
- ▶ It is a branching-time temporal logic based on CTL.
- ▶ Formula interpretation is Boolean, i.e., a state satisfies a formula or not.
- ▶ The main operator is $\mathbb{P}_J(\varphi)$
 - ▶ where φ constrains the set of paths and J is a threshold on the probability.
 - ▶ it is the probabilistic counterpart of \exists and \forall path-quantifiers in CTL.

DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

- ▶ S is a countable nonempty set of **states**
- ▶ $\mathbf{P} : S \times S \rightarrow [0, 1]$, **transition probability function** s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $\iota_{\text{init}} : S \rightarrow [0, 1]$, the **initial distribution** with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
- ▶ AP is a set of **atomic propositions**.
- ▶ $L : S \rightarrow 2^{AP}$, the **labeling function**, assigning to state s , the set $L(s)$ of atomic propositions that are valid in s .

Initial states

- ▶ $\iota_{\text{init}}(s)$ is the probability that DTMC \mathcal{D} starts in state s
- ▶ the set $\{s \in S \mid \iota_{\text{init}}(s) > 0\}$ are the possible **initial states**.

Probabilistic Computation Tree Logic

- ▶ PCTL **state formulas** over the set AP obey the grammar:

$$\Phi ::= \text{true} \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_J(\varphi)$$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$ is a non-empty interval.

- ▶ PCTL **path formulae** are formed according to the following grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 U \Phi_2 \mid \Phi_1 U^{\leq n} \Phi_2 \quad \text{where } n \in \mathbb{N}.$$

Intuitive semantics

- ▶ $s_0 s_1 s_2 \dots \models \Phi U^{\leq n} \Psi$ if Φ holds until Ψ holds within n steps.
- ▶ $s \models \mathbb{P}_J(\varphi)$ if probability that paths starting in s fulfill φ lies in J .

PCTL syntax

[Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

- ▶ PCTL **state formulas** over the set AP obey the grammar:

$$\Phi ::= \text{true} \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_J(\varphi)$$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$ is a non-empty interval.

- ▶ PCTL **path formulae** are formed according to the following grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 U \Phi_2 \mid \Phi_1 U^{\leq n} \Phi_2$$

where Φ , Φ_1 , and Φ_2 are state formulae and $n \in \mathbb{N}$.

Abbreviate $\mathbb{P}_{[0,0.5]}(\varphi)$ by $\mathbb{P}_{\leq 0.5}(\varphi)$ and $\mathbb{P}_{[0,1]}(\varphi)$ by $\mathbb{P}_{>0}(\varphi)$.

Overview

1 PCTL Syntax

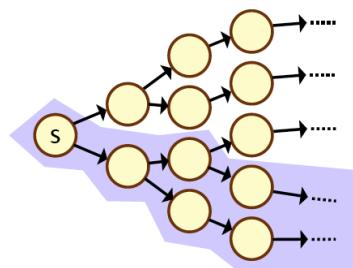
2 PCTL Semantics

3 PCTL Model Checking

4 Complexity

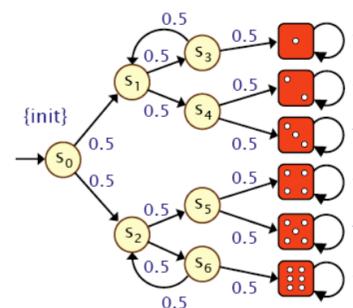
5 Summary

Semantics of \mathbb{P} -operator



- $s \models \mathbb{P}_J(\varphi)$ if:
 - the probability of all paths starting in s fulfilling φ lies in J .
- Example: $s \models \mathbb{P}_{>\frac{1}{2}}(\Diamond a)$ if
 - the probability to reach an a -labeled state from s exceeds $\frac{1}{2}$.
- Formally:
 - $s \models \mathbb{P}_J(\varphi)$ if and only if $\Pr_s\{\pi \in \text{Paths}(s) \mid \pi \models \varphi\} \in J$.

Correctness of Knuth's die



Correctness of Knuth's die

$$\mathbb{P}_{=\frac{1}{6}}(\Diamond 1) \wedge \mathbb{P}_{=\frac{1}{6}}(\Diamond 2) \wedge \mathbb{P}_{=\frac{1}{6}}(\Diamond 3) \wedge \mathbb{P}_{=\frac{1}{6}}(\Diamond 4) \wedge \mathbb{P}_{=\frac{1}{6}}(\Diamond 5) \wedge \mathbb{P}_{=\frac{1}{6}}(\Diamond 6)$$

Derived operators

$$\Diamond \Phi = \text{true} \cup \Phi$$

$$\Diamond^{\leq n} \Phi = \text{true} \cup^{\leq n} \Phi$$

$$\mathbb{P}_{\leq p}(\Box \Phi) = \mathbb{P}_{>1-p}(\Diamond \neg \Phi)$$

$$\mathbb{P}_{(p,q)}(\Box^{\leq n} \Phi) = \mathbb{P}_{[1-q, 1-p]}(\Diamond^{\leq n} \neg \Phi)$$

Example properties

- Transient probabilities to be in *goal* state at the fourth epoch:

$$\mathbb{P}_{\geq 0.92}(\Diamond^{=4} \text{goal})$$

- With probability ≥ 0.92 , a goal state is reached legally:

$$\mathbb{P}_{\geq 0.92}(\neg \text{illegal} \cup \text{goal})$$

- ... in **maximally 137** steps: $\mathbb{P}_{\geq 0.92}(\neg \text{illegal} \cup^{\leq 137} \text{goal})$

- ... once there, remain there almost surely for the next 31 steps:

$$\mathbb{P}_{\geq 0.92}(\neg \text{illegal} \cup^{\leq 137} \mathbb{P}_{=1}(\Box^{[0,31]} \text{goal}))$$

PCTL semantics (1)

Notation

$\mathcal{D}, s \models \Phi$ if and only if state-formula Φ holds in state s of (possibly infinite) DTMC \mathcal{D} . As \mathcal{D} is known from the context we simply write $s \models \Phi$.

Satisfaction relation for state formulas

The satisfaction relation \models is defined for PCTL state formulas by:

$$\begin{aligned} s \models a &\quad \text{iff } a \in L(s) \\ s \models \neg \Phi &\quad \text{iff not } (s \models \Phi) \\ s \models \Phi \wedge \Psi &\quad \text{iff } (s \models \Phi) \text{ and } (s \models \Psi) \\ s \models \mathbb{P}_{\mathcal{J}}(\varphi) &\quad \text{iff } \Pr(s \models \varphi) \in \mathcal{J} \end{aligned}$$

where $\Pr(s \models \varphi) = \Pr_s\{\pi \in \text{Paths}(s) \mid \pi \models \varphi\}$

Examples

PCTL semantics (2)

Satisfaction relation for path formulas

Let $\pi = s_0 s_1 s_2 \dots$ be an infinite path in (possibly infinite) DTMC \mathcal{D} . Recall that $\pi[i] = s_i$ denotes the $(i+1)$ -st state along π .

The satisfaction relation \models is defined for state formulas by:

$$\begin{aligned} \pi \models \bigcirc \Phi &\quad \text{iff } s_1 \models \Phi \\ \pi \models \Phi \cup \Psi &\quad \text{iff } \exists k \geq 0. (\pi[k] \models \Psi \wedge \forall 0 \leq i < k. \pi[i] \models \Phi) \\ \pi \models \Phi \cup^{\leq n} \Psi &\quad \text{iff } \exists k \geq 0. (k \leq n \wedge \pi[k] \models \Psi \wedge \forall 0 \leq i < k. \pi[i] \models \Phi) \end{aligned}$$

Measurability

PCTL measurability

For any PCTL path formula φ and state s of DTMC \mathcal{D} , the set $\{\pi \in \text{Paths}(s) \mid \pi \models \varphi\}$ is measurable.

Proof (sketch):

Three cases:

1. $\bigcirc \Phi$:
 - ▶ cylinder sets constructed from paths of length one.
2. $\Phi \cup^{\leq n} \Psi$:
 - ▶ (finite number of) cylinder sets from paths of length at most n .
3. $\Phi \cup \Psi$:
 - ▶ countable union of paths satisfying $\Phi \cup^{\leq n} \Psi$ for all $n \geq 0$.

Overview

1 PCTL Syntax

2 PCTL Semantics

3 PCTL Model Checking

4 Complexity

5 Summary

Example

PCTL model checking

PCTL model checking problem

Input: a finite DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$, state $s \in S$, and PCTL state formula Φ

Output: yes, if $s \models \Phi$; no, otherwise.

Basic algorithm

In order to check whether $s \models \Phi$ do:

1. Compute the **satisfaction set** $Sat(\Phi) = \{s \in S \mid s \models \Phi\}$.
2. This is done **recursively** by a bottom-up traversal of Φ 's parse tree.
 - The nodes of the parse tree represent the subformulae of Φ .
 - For each node, i.e., for each subformula Ψ of Φ , determine $Sat(\Psi)$.
 - Determine $Sat(\Psi)$ as function of the satisfaction sets of its children:
 - e.g., $Sat(\Psi_1 \wedge \Psi_2) = Sat(\Psi_1) \cap Sat(\Psi_2)$ and $Sat(\neg\Psi) = S \setminus Sat(\Psi)$.
3. Check whether state s belongs to $Sat(\Phi)$.

Core model checking algorithm

Propositional formulas

$Sat(\cdot)$ is defined by structural induction as follows:

$$\begin{aligned} Sat(\text{true}) &= S \\ Sat(a) &= \{s \in S \mid a \in L(s)\}, \text{ for any } a \in AP \\ Sat(\Phi \wedge \Psi) &= Sat(\Phi) \cap Sat(\Psi) \\ Sat(\neg\Phi) &= S \setminus Sat(\Phi). \end{aligned}$$

Probabilistic operator \mathbb{P}

In order to determine whether $s \in Sat(\mathbb{P}_J(\varphi))$, the probability $Pr(s \models \varphi)$ for the event specified by φ needs to be established. Then

$$Sat(\mathbb{P}_J(\varphi)) = \{s \in S \mid Pr(s \models \varphi) \in J\}.$$

Let us consider the computation of $Pr(s \models \varphi)$ for all possible φ .

The next-step operator

Recall that: $s \models \mathbb{P}_J(\bigcirc \Phi)$ if and only if $Pr(s \models \bigcirc \Phi) \in J$.

Lemma

$$Pr(s \models \bigcirc \Phi) = \sum_{s' \in Sat(\Phi)} \mathbf{P}(s, s').$$

Algorithm

Considering the above equation for all states simultaneously yields:

$$(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{P} \cdot \mathbf{b}_\Phi$$

with \mathbf{b}_Φ the characteristic vector of $Sat(\Phi)$, i.e., $b_\Phi(s) = 1$ iff $s \in Sat(\Phi)$.

Checking the next-step operator reduces to a single matrix-vector multiplication.

Bounded until (1)

Recall that: $s \models \mathbb{P}_J(\Phi \text{ U}^{\leq n} \Psi)$ if and only if $Pr(s \models \Phi \text{ U}^{\leq n} \Psi) \in J$.

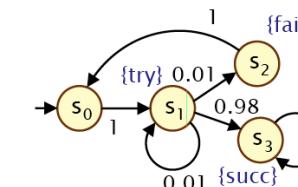
Lemma

Let $S_{=1} = Sat(\Psi)$, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:

$$Pr(s \models \Phi \text{ U}^{\leq n} \Psi) = \begin{cases} 1 & \text{if } s \in S_{=1} \\ 0 & \text{if } s \in S_{=0} \\ 0 & \text{if } s \in S_? \wedge n=0 \\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot Pr(s' \models \Phi \text{ U}^{\leq n-1} \Psi) & \text{otherwise} \end{cases}$$

Example

Consider DTMC:



and PCTL-formula:

$$\mathbb{P}_{\geq 0.9}(\bigcirc(\neg try \vee succ))$$

1. $Sat(\neg try \vee succ) = (S \setminus Sat(try)) \cup Sat(succ) = \{s_0, s_2, s_3\}$
2. We know: $(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{P} \cdot \mathbf{b}_\Phi$ where $\Phi = \neg try \vee succ$
3. Applying that to this example yields:

$$(Pr(s \models \bigcirc \Phi))_{s \in S} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{pmatrix}$$

4. Thus: $Sat(\mathbb{P}_{\geq 0.9}(\bigcirc(\neg try \vee succ))) = \{s_1, s_2, s_3\}$.

Bounded until (2)

Let $S_{=1} = Sat(\Psi)$, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:

$$Pr(s \models \Phi \text{ U}^{\leq n} \Psi) = \begin{cases} 1 & \text{if } s \in S_{=1} \\ 0 & \text{if } s \in S_{=0} \\ 0 & \text{if } s \in S_? \wedge n=0 \\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot Pr(s' \models \Phi \text{ U}^{\leq n-1} \Psi) & \text{otherwise} \end{cases}$$

Algorithm

1. Let $\mathbf{P}_{\Phi, \Psi}$ be the probability matrix of $\mathcal{D}[S_{=0} \cup S_{=1}]$.
2. Then $(Pr(s \models \Phi \text{ U}^{\leq 0} \Psi))_{s \in S} = \mathbf{b}_\Psi$
3. And $(Pr(s \models \Phi \text{ U}^{\leq i+1} \Psi))_{s \in S} = \mathbf{P}_{\Phi, \Psi} \cdot (Pr(s \models \Phi \text{ U}^{\leq i} \Psi))_{s \in S}$.
4. This requires n matrix-vector multiplications in total.

Bounded until (3)

Algorithm

1. Let $\mathbf{P}_{\phi, \psi}$ be the probability matrix of $\mathcal{D}[S_{=0} \cup S_{=1}]$.
2. Then $(Pr(s \models \phi U^{\leq 0} \psi))_{s \in S} = \mathbf{b}_{\psi}$
3. And $(Pr(s \models \phi U^{\leq i+1} \psi))_{s \in S} = \mathbf{P}_{\phi, \psi} \cdot (Pr(s \models \phi U^{\leq i} \psi))_{s \in S}$.
4. This requires n matrix-vector multiplications in total.

Remarks

1. In terms of matrix powers: $(Pr(s \models \phi U^{\leq n} \psi))_{s \in S} = \mathbf{P}_{\phi, \psi}^n \cdot \mathbf{b}_{\psi}$.
 - Computing $\mathbf{P}_{\phi, \psi}^n$ in $\log_2 n$ steps is **inefficient** due to fill-in.
 - That is to say, $\mathbf{P}_{\phi, \psi}^n$ is much less sparse than $\mathbf{P}_{\phi, \psi}$.
2. $\mathbf{P}_{\phi, \psi}^n \cdot \mathbf{b}_{\psi} = (Pr(s \models \bigcirc^{\leq n} \psi))_{s \in S}$, in $\mathcal{D}[S_{=0} \cup S_{=1}]$.
 - Where $\bigcirc^0 \psi = \psi$ and $\bigcirc^{i+1} \psi = \bigcirc(\bigcirc^i \psi)$.
 - This thus amounts to a transient analysis in DTMC $\mathcal{D}[S_{=0} \cup S_{=1}]$.

Example

Until

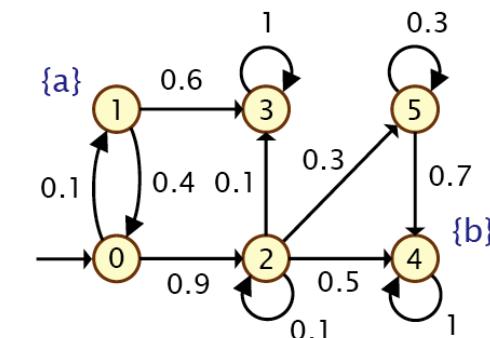
Recall that: $s \models \mathbb{P}_J(\phi U \psi)$ if and only if $Pr(s \models \phi U \psi) \in J$.

Algorithm

1. Determine $S_{=1} = Sat(\mathbb{P}_{=1}(\phi U \psi))$ by a graph analysis.
2. Determine $S_{=0} = Sat(\mathbb{P}_{=0}(\phi U \psi))$ by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures **unique** solution to linear equation system.
2. **Reduces** the number of variables in the linear equation system.
3. Gives **exact** results for the states in $S_{=1}$ and $S_{=0}$ (i.e., no round-off).
4. For **qualitative** properties, no further computation is needed.



Overview

1 PCTL Syntax

2 PCTL Semantics

3 PCTL Model Checking

4 Complexity

5 Summary

Time complexity

Time complexity of PCTL model checking

For finite DTMC \mathcal{D} and PCTL state-formula Φ , the PCTL model-checking problem can be solved in time

$$\mathcal{O}(\text{poly}(\text{size}(\mathcal{D})) \cdot n_{\max} \cdot |\Phi|).$$

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this yields a linear complexity in $|\Phi|$.
2. The worst-case operator is (unbounded) until.
 - 2.1 Determining $S_{=0}$ and $S_{=1}$ can be done in linear time.
 - 2.2 Direct methods to solve linear equation systems are in $\Theta(|S_7|^3)$.
3. Strictly speaking, $U^{\leq n}$ could be more expensive for large n .
But it remains polynomial, and n is small in practice.

Time complexity

Let $|\Phi|$ be the size of Φ , i.e., the number of logical and temporal operators in Φ .

Time complexity of PCTL model checking

For finite DTMC \mathcal{D} and PCTL state-formula Φ , the PCTL model-checking problem can be solved in time

$$\mathcal{O}(\text{poly}(\text{size}(\mathcal{D})) \cdot n_{\max} \cdot |\Phi|)$$

where $n_{\max} = \max\{ n \mid \Psi_1 U^{\leq n} \Psi_2 \text{ occurs in } \Phi \}$ with and $n_{\max} = 1$ if Φ does not contain a bounded until-operator.

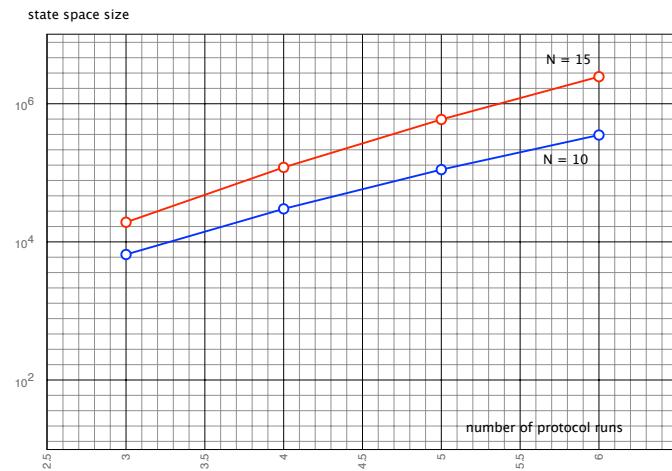
Example: Crowds protocol

Security: Crowds protocol

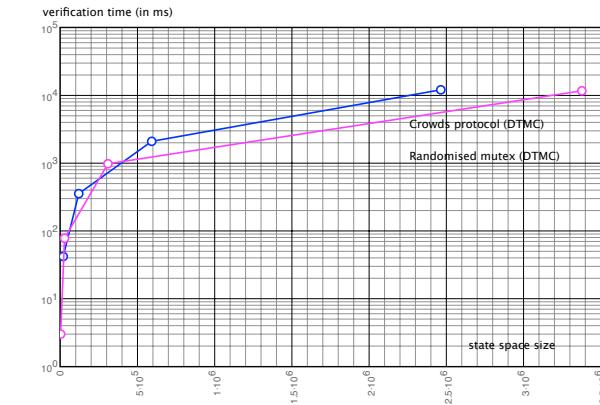
[Reiter & Rubin, 1998]

- A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- Hide user's communication by random routing within a crowd
 - sender selects a crowd member randomly using a uniform distribution
 - selected router flips a biased coin:
 - with probability $1 - p$: direct delivery to final destination
 - otherwise: select a next router randomly (uniformly)
 - once a routing path has been established, use it until crowd changes
- Rebuild routing paths on crowd changes
- Property: Crowds protocol ensures "probable innocence":
 - probability real sender is discovered $< \frac{1}{2}$ if $N \geq \frac{p}{p-1} \cdot (c+1)$
 - where N is crowd's size and c is number of corrupt crowd members

State space growth



Some practical verification times



- ▶ command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.
- ▶ PCTL formula $\mathbb{P}_{\leq p}(\Diamond obs)$ where obs holds when the sender's id is detected.

Overview

1 PCTL Syntax

2 PCTL Semantics

3 PCTL Model Checking

4 Complexity

5 Summary

Summary

- ▶ PCTL is a variant of CTL with operator $\mathbb{P}_J(\varphi)$.
- ▶ Sets of paths fulfilling PCTL path-formula φ are measurable.
- ▶ PCTL model checking is performed by a recursive descent over Φ .
- ▶ The next operator amounts to a single matrix-vector multiplication.
- ▶ The bounded-until operator $U^{\leq n}$ amounts to n matrix-vector multiplications.
- ▶ The until-operator amounts to solving a linear equation system.
- ▶ The worst-case time complexity is polynomial in the size of the DTMC and linear in the size of the formula.