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Labeled transition system

Transition system

A (labeled) transition system TS is a quadruple (S, Act,—, Iy, AP, L)
where

\{

S is a (possibly infinitely countable) set of states.

» Act is a (possibly infinitely countable) set of actions.
» — C S x Act x S is a transition relation.

> [y C S the set of initial states.

» AP is a set of atomic propositions.

» L:S— 24P s the labeling function.

We write s % s’ instead of (s, @, s’) € —.
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Strong bisimulation Strong bisimulation

Strong bisimulation relation [Milner, 1980 & Park, 1981]

Let TS — (S, Act, —, lp, AP, L) be a transition system and R C § x 5.

Then R is a strong bisimulation on TS whenever for all (s, t) € R:

6] / o /
1. L(s) = L(t) s > S S > S
2. if s %5 &’ then there exists t' € S such that t - ' and (s/,t') € R R can be completed to R R
3. if t - t’ then there exists s’ € S such that s — s’ and (s',t') € R t t = t
Strong bisimilarity and
Let TS = (S, Act, —, Iy, AP, L) be a transition system and s, t € S. s s % ¢
Then: s is strongly bisimilar to t, notation s ~ t, if there exists a strong R . eted to R R
.. . can be complete (0]
bisimulation R such that (s, t) € R. P
t % t %t
Not every bisimulation relation is transitive. But: ~ is an equivalence.
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Strongly bisimilar transition systems Example (1)

Are these transition systems strongly bisimilar? (No propositions.)

Bisimilar transition systems

Let TSy, TS, be transition systems over the same set of atomic a
propositions with initial states lp 1 and lp 2, respectively.

Consider the transition system TS = TS; W TSy that results from the
disjoint union of TS; and TS,.

Then: TSy and TS, are called strongly bisimilar if there exists a strong
bisimulation R on $; W S, such that:

1. Vselpi.3t € hpo.(s, t) € R, and

2. Vt e /0’2.35 € /0,1. (S, t) € R.
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Probabilistic Bisimulation

Example (2)

Strong Bisimulation Probabilistic Bisimulation

Strong Bisimulation

Correct or wrong?

51 !
Yes, they are! ~ 2 %2
y wrong

s1 — u, but sp /— blue  (thus sy ¥ )

{ , st ]
&} ~
u L] y
wm 4 correct

- bisimulation:

{(wa, wo), (w], w2), (51, 2), (51, %3), (11, %), (1, ) }
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Quotient LTS under ~
Quotient transition system

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let

Probabilistic Bisimulation

Strong Bisimulation

Quotient transition system

TS/~ = (S, Act,—', I}, AP, L"),  the quotient of TS under ~

For any transition system TS it holds: TS ~ TS/ ~.
where
 §'= 5/~ = (Bl |s < S)wih . = (s[5~ )
a / . .
» ' is defined by: S 7 S The binary relation:
[s]. =" [s']~ R ={(sl[sl~)|seS}

» I, ={[so]~ | so € Io }, the equivalence class of the initial states in TS is a strong bisimulation on the pair (TS, TS/ ~).
> L'([s]~) = L(s).

L’ is well-defined as all states in [s]. are equally labeled. Note that if
s %5 &/, then for all t ~ s we have s % t/ with s’ ~ t’.
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Strong bisimulation revisited Overview

Auxiliary predicate

Let P: S x Act x 2° — {0,1} be a predicate such that for S’ C S:

. «
1 if3s'eSs—s @ Probabilistic Bisimulation
0 otherwise. @ Quotient Markov Chain
@ Examples

P(s,a,S') = {

Alternative definition of strong bisimulation

Let TS = (S, Act, —, lp, AP, L) and R an equivalence relation on S.
Then: R is a strong bisimulation on S if for (s, t) € R:

1. L(s) = L(t), and
2. P(s,a,C) = P(t,a,C) forall CinS/R and a € Act.

This definition is equivalent to the previous one. Proof is left as an exercise.
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Probabilistic bisimulation: intuition Probabilistic bisimulation

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, tinit, AP, L) be a DTMC and R C S x S an equivalence.

Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

» Strong bisimulation is used to compare labeled transition systems. 1. L(s) = L(t), and
» Strongly bisimilar states exhibit the same step-wise behaviour. 2. P(s, C) = P(t, C) for all equivalence classes C € S/R
» Our aim: adapt bisimulation to discrete-time Markov chains. where P(s, C) =Y ,cc P(s, ¢).

» This yields a probabilistic variant of strong bisimulation.

For states in R, the probability of moving by a single transition to some

» When do two DTMC states exhibit the same step-wise behaviour?

equivalence class is equal.

Probabilistic bisimilarity

» Key: if their transition probability for each equivalence class coincides.
Let D be a DTMC and s, t states in D. Then: s is probabilistically
bisimilar to t, denoted s ~, t, if there exists a probabilistic bisimulation R
with (s, t) € R.
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Probabilistic Bisimulation

Probabilistic Bisimulation

Probabilistic bisimulation

Probabilistic bisimulation

Let D = (S, P, tinit, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

L(s) = L(t), and
P(s, C) = P(t, C) for all equivalence classes C € S/R.

As opposed to bisimulation on states in transition systems, any probabilistic
bisimulation is an equivalence.
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Bisimilar DTMCs

Bisimilar DTMCs

Let D1, D, be DTMCs over the same set of atomic propositions with

initial distributions ¢}, and /2, respectively.

init
Consider the DTMC D = Dy W D5 that results from the disjoint union of
Dl and Dz.

Then D7 and D5 are bisimilar if

L.(C) = 2,(C)

init init
for each bisimulation equivalence class C of D = D1 W D;.

Here, 1, (C) denotes > tiui(S).
seC
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Example

Quotient under ~,

Quotient DTM under ~,,

For D = (S, P, 4y, AP, L) and probabilistic bisimulation ~, C S x S let

D/~p = (§,P i .. AP, L"), the quotient of D under ~,

where

S'=5/~p= {[s]l~,|s€S}with[s]., = {s'€S|s~ps'}
P'([s]~,. [s']~,) = P(s.[s']~,)

L;nit([s]’\‘p) = Zs’e[s]NP Linit(s)

L'([s]~,) = L(s).

The transition probability from [s]., to [t]~, equals P(s, [t]~,). This is
well-defined as P(s, C) = P(s’, C) for all s ~, s’ and all bisimulation equivalence
classes C.

v

vV VvV
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Craps A DTMC model of Craps

C%P'PS GAMB“’V@

» Come-out roll:
» 7 or 11: win

» Roll two dice and bet

o > 2,3 0r 12: l

» Come-out roll (“pass line" wager): lose ; () 4
» outcome 7 or 11: win > else: roll ; ; i/ O\ & :
» outcome 2, 3, or 12: lose (“craps”) again

» any other outcome: roll again (outcome is “point”)

EE
2

3 3 13 13
COR SO CONNODLEO).
1 | 5
5 g 35

5
i

> Next roll(s):

-

» Repeat until 7 or the “point” is thrown:

> 7: lose \
» outcome 7: lose (“seven-out”) > point: win ‘Wﬂ

» outcome the point: win > else: roll
> any other outcome: roll again again 1 1
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Quotient DTMC of Craps under ~, Example: Crowds protocol
Security: Crowds protocol [Reiter & Rubin, 1998]

> A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)
» Hide user’'s communication by random routing within a crowd

> sender selects a crowd member randomly using a uniform distribution
> selected router flips a biased coin:

=l

> with probability 1 — p: direct delivery to final destination
> otherwise: select a next router randomly (uniformly)

> once a routing path has been established, use it until crowd changes
» Rebuild routing paths on crowd changes

» Property: Crowds protocol ensures “probable innocence™:
» probability real sender is discovered < % it N > p_”l-(c+1)
2

» where N is crowd'’s size and ¢ is number of corrupt crowd members
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State space reduction under ~, Overview

state space size
7
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© Logical Preservation
108 @ The Logics PCTL, PCTL* and PCTL™
@ Preservation Theorem

©
ol

3.2
3.6
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PCTL syntax Preservation of PCTL-formulas

Bisimulation preserves PCTL

Let D be a DTMC and s, t states in D. Then:

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.
» PCTL state formulas over the set AP obey the grammar: s~pt ifandonlyif sand tare PCTL-equivalent.

o = true ’ a ’ ®; A Dy ‘ -® ’ P, ()

where a € AP, ¢ is a path formula and J C [0,1], J # D is a s ~p t implies that

- i l.
non-empty interva 1. transient probabilities, reachability probabilities,
» PCTL path formulae are formed according to the following grammar: . . e

2. repeated reachability, persistence probabilities

o = Q¢ ‘ b, U b, ‘ o, US" o, 3. all qualitative PCTL formulas
for s and t are equal.

If for PCTL-formula ® we have s = ® but t [~ ®, then it follows s %, t.
A single PCTL-formula suffices!

where @, ¢®1, and P, are state formulae and n € IN.
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PCTL* syntax PCTL* semantics (1)

Probabilistic Computation Tree Logic: Syntax

D, s = & if and only if state-formula ® holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write s = ®.

PCTL* consists of state- and path-formulas.

» PCTL" state formulas over the set AP obey the grammar:

O = true ’ 3 } ;A Dy ‘ —¢ ’ P(y) Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL* state formulas by:

where a € AP, ¢ is a path formula and J C [0,1], J # D is a

non-empty interval. ska iff a€ L(s)

sE - iff not (s = @)
sEPAV iff (sE®)and (s = V)
o= | ¢ | phe | Ov | ele SEP(p) ff PiskEg)ed

» PCTL* path formulae are formed according to the following grammar:

where ® is a state formula and ¢, 1, and @, are path formulae. where Pr(s = @) = Pro{m € Paths(s) | 7 = ¢}
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PCTL* semantics (2) Measurability

Satisfaction relation for path formulas

Let m = sps1 5, ... be an infinite path in (possibly infinite) DTMC D. Let

7' = s Si11Si42 ... denotes the i-th suffix of . PCTL* measurability

The satisfaction relation |= is defined for state formulas by: For any PCTL* path formula ¢ and state s of DTMC D,
the set { m € Paths(s) | ™ = ¢ } is measurable.

TE® iff 7[0] = &
LT
TEeiApy iff mE@;and = @ Left as an exercise, using the result for PCTL measurability.

T E Qp iff 7l
TEeiUgps iff 3k>0(7KEp AVOK i< k.ml =)
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Probabilistic Bisimulation Logical Preservation

Bounded until in PCTL*

Bounded until

Bounded until can be defined using the other operators:

e1US o = \/ @ where ¢bg = @2 and thip1 = o1 A Q) for i > 0.
0<ign

Examples in PCTL* but not in PCTL

P.1(OaU O b) and P—y(P,1(00a) V Py (00b)).

1
3
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PCTL™ syntax

Probabilistic Computation Tree Logic: Syntax

PCTL™ only consists of state-formulas. These formulas over the set AP
obey the grammar:

b = a ) ®1 A Dy ‘ P<,(O®)

where a € AP and p is a probability in [0, 1].

This is a truly simple logic. It does not contain the until-operator. Negation is not
present and cannot be expressed. Only upper bounds on probabilities.

|
The next theorem shows that PCTL-, PCTL*- and PCTL™-equivalence
coincide.

Preservation of PCTL*-formulas

Bisimulation preserves PCTL*

Let D be a DTMC and s, t states in D. Then:

s~pt ifandonlyif sandtare PCTL*-equivalent.

1. Bisimulation thus preserves not only all PCTL but also all PCTL* formulas.

2. By the last two results it follows that PCTL- and PCTL*-equivalence
coincide. Thus any two states that satisfy the same PCTL formulas, satisfy
the same PCTL™ formulas.
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Preservation of PCTL

PCTL/PCTL" and Bisimulation Equivalence

Let D be a DTMC and s3, s, states in D. Then, the following statements
are equivalent:

(@) s1 ~p s

(b) s1 and s, are PCTL*-equivalent, i.e., fulfill the same PCTL* formulas
(c) s1 and sp are PCTL-equivalent, i.e., fulfill the same PCTL formulas
(d) s1 and s are PCTL™ -equivalent, i.e., fulfill the same PCTL™ formulas

(a) = (b): by structural induction on PCTL* formulas.

(b) = (c): trivial as PCTL is a sublogic of PCTL*.

(c) = (d): trivial as PCTL— is a sublogic of PCTL.

(d) = (a): involved. First finite DTMCs, then for arbitrary DTMCs.
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Proof IEEE 802.11 group communication protocol
original DTMC quotient DTMC red. factor

oD states transitions | ver. time blocks | total time | states | time

4 1125 5369 122 71 13 15.9 | 9.00
12 37349 236313 7180 1821 642 20.5 | 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 22.4 7.9
36 | 2076773 | 15187833 | 5103900 91391 77694 22.7 6.6
40 | 3101445 22871849 | 7725041 | 135752 127489 22.9 6.1
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Overview Summary

» Bisimilar states have equal transition probabilities to all equivalence
classes.

~p is the coarsest probabilistic bisimulation.

In a quotient DTMC all states are equivalence classes under ~.
Bisimulation, i.e., ~5, and PCTL-equivalence coincide.

PCTL, PCTL* and PCTL™-equivalence coincide.

To show s o4, t, show s |= ® and t [~ & for & € PCTL™.

Bisimulation may yield up to exponential savings in state space.

@ Summary Take-home message

Probabilistic bisimulation coincides with a notion from the sixties, named
(ordinary) lumpability.

vV VvV vV VvV Y
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