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Paths and traces

Paths

A path in DTMC D is an infinite sequence of states spsiS. .. ... with
P(si,si+1) > 0 for all i.

Let Paths(D) denote the set of paths in D, and Paths*(D) the set of finite
prefixes thereof.

Trace

The trace of path m = sy sy s ... is trace(mw) = L(sp) L(s1) L(s2) . ... The
trace of finite path 7 = sps1...s, is trace(m) = L(sp) L(s1) ... L(sn)-

The set of traces of a set I of paths: trace(IN) = { trace(w) | 7 € M }.

|
Example on the blackboard.
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LT properties

Linear-time property

A linear-time property (LT property) over AP is a subset of (2AP)W. An
LT-property is thus a set of infinite traces over 2AP

Intuition

An LT-property gives the admissible behaviours of the DTMC at hand.

Probability of LT properties
The probability for DTMC D to exhibit a trace in P (over AP) is:

PP(P) = PrP{r € Paths(D) | trace(r) € P }.

For state s in D, let Pr(s = P) = Prs{m € Paths(s) | trace(m) € P }.

We will later identify a rich set P of LT-properties—those that include all LTL
formulas—for which {7 € Paths(D) | trace(w) € P} is measurable.
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Safety properties

Safety property

LT property Psare over AP is a safety property if for all o € (2AP)w \ Psate
there exists a finite prefix & of ¢ such that:

Psate N {U/ € (2AP)W | 7 is a prefix of a’} = .

all possible extensions of &

Any such finite word & is called a bad prefix for Ps,fe.

Regular safety property

A safety property is regular if its set of bad prefixes constitutes a regular
language (over the alphabet 247). Thus, the bad prefixes of a regular
safety property can be represented by a finite-state automaton.
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Probability of a regular safety property
Let A = (Q,2%7,8, o, F) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Psafe:

Psate = {AoALAz... € (27P) | VN> 0. A0 A1... A, & L(A)}.

Assume § to be total, i.e., (g, A) is defined for each A C AP and each
state g € Q. Furthermore, let D = (S, P, 4, AP, L) be a finite DTMC,
Our interest is to compute the probability

PPP(Posre) = 1 — > tiu(s) - Pr(s = A)  where
seS
Prs=A) = PrP{x € Paths(s) | pref{trace(r)) N L(A) # @}
= PrP{x € Paths(s) | trace(r) ¢ Psate }

where pref{Ag A1 ...) denotes the set of all finite prefixes of the infinite
word Ag A; ... € (24P).
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Probability of a regular safety property
Probability of a regular safety property

Pr(Psafe) =1- Zsesl/init,(s)'Pr(S ': A) with
Pr(s = A) = Pr{m € Paths(s) | trace(w) ¢ Psate }.

The value Pr(s |= A) can be written as the (possibly infinite) sum:

Prs=A) = Y P(@)

~

where 7 ranges over all finite path prefixes sp s; ... s, with sy = s and:
1. trace(sosi...sn) = L(so) L(s1)...L(sn) € L(A), and

2. the length of 7 is minimal, i.e., trace(sp sy ...s;) ¢ L(A) for all 0 < i < n.

Computing Pr(s |= A) by these sums is difficult; we'll propose an alternative.
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Product Markov chain

» For each path m = sps;sy... in DTMC D there exists a unique run
qoq1 G2 ... in DFA A for trace(m) = L(sp) L(s1) L(s2) ... and
7t = (s0,q1) (51, G2) (52, q3) ... is a path in D® A.

» The DFA A does not affect the probabilities, i.e., for each measurable
set I1 of paths in D and state s:

A
PR(N) = Prausy (T Imeny

n+
> For M = {7 € Paths"(s) | pref{trace(r)) N L(A) # @ }, the set MT
is given by:

Nt = {7t € PathsP®A((s, 6(qo, L(s)))) | n* = Qaccept}.
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Product Markov chain

Product Markov chain
Let D = (S, P, Ly, AP, L) be a DTMC and A = (Q,247, 6, qo, F) be a
DFA. The product D ® A is the DTMC:

DA = (Sx QP .. {accept} L)
where L'((s, q)) = { accept} if g € F and L'({s, q)) = @ otherwise, and

{ Linit(s) if g = 5(‘70: L(S))

d (s, =
mel(5:9)) 0 otherwise.
The transition probabilities in D ® A are given by:

P(s,s") if g’ =d(q, L(s"))

0 otherwise.

P'((s.q).(s".d") = {
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Quantitative analysis of regular safety properties

Theorem for analysing regular safety properties

Let Ps,fe be a regular safety property, A a DFA for the set of bad prefixes
of Psafe, D @ DTMC, and s a state in D. Then:

PP(s = Pour) = PrP®4((s, qs) I~ Oaccept)
= 1— PP?A((s, qs) = Qaccept)
where gs = 6(qo, L(s)).

1. For finite DTMCs, PrD(s E Psafe) can thus be computed by determining
reachability probabilities of accept states in D ® A. This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PI’D(S E Psafe) > 0 and
Prp(s E Ps.re) = 1, a graph analysis of D ® A suffices.
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Overview w-regular languages

Infinite repetition of languages

Let ¥ be a finite alphabet. For language £ C ¥*, let £L“ be the set of words in
Y* U X that arise from the infinite concatenation of (arbitrary) words in ¥, i.e.,

LY = {W1W2W3...|Wi€£,i>1}.

e w-regular properties The result is an w-language, i.e., £L C X*, provided that LC X, i.e., e € L.

w-regular expression

An w-regular expression G over the X has the form: G = E;.F{ + ... + E,.F}/

where n > 1 and Eq, ..., E, Fy, ..., F, are regular expressions over ¥ such that
e¢ L(F;), forall 1<i<n.

The semantics of G is defined by £,(G) = L(Ep).L(F1)“U...UL(E,).L(F,)*
where L(E) C X* denotes the language (of finite words) induced by the regular
expression E.
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w-regular expressions w-regular properties

w-regular expression w-regular property

An w-regular expression G over the X has the form: G = E;.F{ + ...+ E,.F}
where n > 1 and Eq, ..., E,, F1, ..., F, are regular expressions over ¥ such that
e ¢ L(F;), forall 1 <i<n.

The semantics of G is defined by £,(G) = L(E1).L(F1)“U...UL(E,).L(F,)*
where £(E) C ¥* denotes the language (of finite words) induced by the regular

LT property P over AP is called w-regular if P = L,,(G) for some
w-regular expression G over the alphabet AP

Example
areseton [E Let AP={a,b}. Then some w-regular properties over AP are:

> always a, i.e., ({a}+{a b})”.

> cventualty 3, ., (24 {5})" (1} +{a.5)).24P)~

Examples for w-regular expressions over the alphabet ¥ = { A, B, C} are > infinitely often a, i.e., (& +{b})*.({a}+{a b}))~.

(A+ B)*A(AAB+ C)¥ or A(B+ C)*AY + B(A+ C)“. > from some moment on, always a, i.e., (2AP)*.({a} +{a b})“.
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w-regular property w-regular property

LT property P over AP is called w-regular if P = L,,(G) for some LT property P over AP is called w-regular EZPP = L,(G) for some
w-regular expression G over the alphabet 2AP w-regular expression G over the alphabet 27",

Eae

Starvation freedom in the sense of “whenever process P is waiting then it will
enter its critical section eventually” is an w-regular property as it can be described
by

A\ . PN e . %\ % N
(QAP)UJ \ Poare = BadPref(Psafe)~(2AP)w ((mwait)*.wait.true* .crit)” + ((—wait)*.wait.true*.crit)".(-wait)

Any regular safety property Ps.f is an w-regular property. This follows from the
fact that the complement language

regular Intuitively, the first summand stands for the case where P requests and enters its
critical section infinitely often, while the second summand stands for the case

is an w-regular language, and w-regular language are closed under complement. . . .. .
& guag g guag P where P is in its waiting phase only finitely many times.
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Overview Deterministic Biichi automata

Deterministic Biichi Automaton (DBA)

A deterministic Biichi automaton (DBA) A = (Q, X%, d, qo, F) with
> @ is a finite set of states with initial state gg € (Q,
> 2 is an alphabet,
» §: Q x X — Q@ is a transition function,
» F C Qis a set of accept (or: final) states.
@ Verifying DBA objectives A run for 0 = AgA1Ax... € X¥ denotej an infinite sequence qo g1 g2 . .. of
states in A such that gp € Qp and q; —> gj11 for i > 0.
Run go g1 g2 . .. is accepting if gq; € F for infinitely many indices / € IN.

The infinite language of A is

L,(A) = {o € X¥ | there exists an accepting run for o in A }.
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Deterministic Biichi automata for LT properties Some facts about DBA

Expressiveness of DBA

For any DBA A, the language £, (A) is w-regular.

B
(%0) a
|
. A U There does not exist a DBA over the alphabet ¥ = { a, b} for the
A B w-regular expression (a+ b)*.a%.

The class of DBA-recognizable languages is a proper subclass of the class
of w-regular languages and is not closed under complementation.

DBA over { A, B} with F = { g1 } and initial state go accepting the LT

property “infinitely often B". |

An w-language is recognizable by a DBA iff it is the limit language of a
regular language. (Details: see lecture Applications of Automata Theory.)
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Quantitative analysis of DBA properties Overview

Quantitative Analysis for DBA-Definable Properties

Let A be a DBA and D a DTMC. Then, for all states s in D:
PP(s = A) = PP%A((s, qs) = Oaccept)

where gs = 6(qo, L(s)).

Algorithm

Recall that for finite DTMCs, the probability of (J{accept can be obtained in
polynomial time by first determining the BSCCs of D ® A. For each BSCC B that
contains a state (s, q) with g € F, determine the probability of eventually
reaching B. Its sum is the required probability. Thus this amounts to solve a linear
equation system for each accepting BSCC in D.

© Verifying w-regular properties
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Beyond DBA properties Deterministic Rabin automata

Ak i (B0 4 = (A1 0.7 8

» @, qo € Qo, X is an alphabet, and § : Q x ¥ — @ as before
» F={(Li,Ki)|0< i<k} with L;, K C Q, is a set of accept pairs
A run for o = AgA1Az ... € X% denotes an infinite sequence qp g1 g2 . . . of

» Since DBAs do not have the full power of w-regular languages, this approach
is not capable of handling arbitrary w-regular properties.

» To overcome this deficiency, Biichi automata will be replaced by an _ A, )

alternative automaton model for which their deterministic counterparts are states in A such that go € Qo and g; — qgj41 for i > 0.

as expressive as w-regular languages. Run qo g1 g2 ... is accepting if for some pair (L;, K;), the states in L; are
» Such automata have the same components as DBA (finite set of states, and visited finitely often and the states in K; infinitely often. That is, an

so on) except for the acceptance sets. We consider deterministic Rabin accepting run should satisfy

automata. There are alternatives, e.g., Muller automata.
\/ (0O-L; AOOK;).

0<i<k
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Deterministic Rabin automata Deterministic Rabin automata

DRA are at least as expressive as DBA DRA and w-regular languages

Assume a DBA is given with accept set F, i.e., an accepting run should visit some The class of languages accepted by DRAs agrees with the class of

state in F infinitely often. The DRA with the same states and transitions and w-regular languages.
with the singleton acceptance condition F = { (&, F) } is equivalent (i.e., accepts
the same w-language) to this DBA. 1

Thus, the language of any DRA A is w-regular. Vice versa, for any w-regular

Example DRA language £, a DRA A exists such that £, (A) = L.

On the blackboard.
n the blackboar The proof of this theorem is outside the scope of this lecture.
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Product of a Markov chain and a DRA Verifying DRA objectives theorem

The product of DTMC D and DRA A is defined as the product of a Markov Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
chain and a DFA, except that the labeling is defined differently. of all accepting BSCCs in D ® A. Then:

Let the acceptance condition of A is F = { (L1, K1),...,(Lk, Kk) }. Then the
sets L;, K; serve as atomic propositions in D ® A. The labeling function L in
D ® A is the obvious one: if H e { Ly, ..., L, Ky, ..., Kk }, then H € L'({s, q)) if

and only if g € H.

PP(s = A) = PP ((s,qs) = OU) whereqs = 6(qo, L(s)).

Accepting BSCC On the blackboard (if time permits).
A BSCC T in D® A is accepting if and only if there exists some index N
ie{l, ..., k } such that:
{ } Thus: PP(A) = 3. ctme(s) - PPEA((s, 6(qo, L(s))) k= OU). The
TN(SxL)=2 and TN (SxK,) # @. computation of probabilities for satisfying w-regular properties boils down to
computing the reachability probabilities for certain BSCCs in D ® A. Again, a
Thus, once such an accepting BSCC T is reached in D ® A, the acceptance graph analysis and solving systems of linear equations suffice. The time
criterion for the DRA A is fulfilled almost surely. complexity is po|ynomia| in the size of D and A.
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Measurability Linear temporal logic

Measurability theorem for w-regular properties [Vardi 1985]

For any DTMC D and w-regular LT property P, the set Linear Temporal Logic: Syntax [Pnueli 1977]
{7 € Paths(D) | trace(w) € P} LTL formulas over the set AP obey the grammar:
is measurable. @ = a ‘ - ‘ 01 A P2 ’ O e ‘ 01U o

Proof (sketch) where a € AP and ¢, ¢1, and ¢, are LTL formulas.

Represent P by a DRA A with accept sets { (L1, K1), ..., (Lk. Kk) }. Let

M= U...UM. In addition, NM; = MY N NP where NPT is the set of paths

7 in D such that 7+ = O0—L;, and NP9 is the set of paths 7 in D such that (Onktietb) ek board:
7t | OOK;. It remains to show that I'If>D and I'I',-:I<> are measurable. This goes
along the same lines as proving that ¢[J G and (OO G are measurable.
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LTL semantics

The LT-property induced by LTL formula ¢ over AP is:

Words(yp) = {a € (ZAP)W |o = 90}, where |= is the smallest relation satisfying:
o E true
o E a iff ae Ay (e, Ao = a)
o E o1 ANy iff oFEpando =)
o E -y iff o=@
o E Qv iff ol =A1AA3... = ¢
o E oiUgpy iff 3j>0. 0/ ¢y and o' |1, 0<i<j
for o = ApA1Az ... we have o' = AjAi11Ais2 . .. is the suffix of o from index i on.
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Verifying a DTMC against LTL formulas

Verifying w-regular properties

Complexity of LTL model checking [Vardi 1985]

The qualitative model-checking problem for finite DTMCs against LTL
formula ¢ is PSPACE-complete, i.e., verifying whether Pr(s = ¢) > 0 or
Pr(s = ) = 1 is PSPACE-complete.

Recall that the LTL model-checking problem for finite transition systems is also
PSPACE-complete.
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Some facts about LTL

LTL is w-regular

For any LTL formula ¢, the set Words(¢) is an w-regular language.

LTL are DRA-definable

For any LTL formula ¢, there exists a DRA A such that £, = Words(y)

2lel

where the number of states in A lies in 2¢7 .
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Summary

» Verifying a DTMC D against a DFA 4, i.e., determining Pr(D = A),
amounts to computing reachability probabilities of accept states in D ® A.

» For DBA objectives, the probability of infinitely often visiting an accept state
inD® A.

» DBA are strictly less powerful than w-regular languages.
» Deterministic Rabin automata are as expressive as w-regular languages.

» Verifying DTMC D agains DRA A amounts to computing reachability
probabilities of accepting BSCCs in D ® A.

Take-home message

Model checking a DTMC against various automata models reduces to computing
reachability probabilities.
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