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Randomness and concurrency

Markov chains are not appropriate for modeling randomized distributed systems,
since they cannot adequately model the interleaving behavior of the concurrent

processes.
process 1 process 2
tosses a tosses a
coin coin
process 2 process 1
tosses a tosses a
coin coin
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Nondeterminism

The use of nondeterminism

» Concurrency — scheduling of parallel components
> in randomised distributed algorithms, several components run partly
autonomously and interact asynchronously
» Abstraction
> partition state space of a DTMC in similar (but not bisimilar) states
» replace probabilistic branching by a nondeterministic choice
» Unknown environments

> interaction with unknown environment
» example: security in which the environment is an unknown adversary

Beware

Nondeterminism is not the same as a uniform distribution!

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 5/32
Markov Decision Processes Markov Decision Processes

Markov decision process (MDP)

Markov decision processes

» In MDPs, both nondeterministic and probabilistic choices coexist.

» MDPs are transition systems in which in any state a nondeterministic
choice between probability distributions exists.

» Once a probability distribution has been chosen nondeterministically,
the next state is selected probabilistically—as in DTMCs.

» Any MC is thus an MDP in which in any state the probability
distribution is uniquely determined.

|
Randomized distributed algorithms are typically appropriately modeled by MDPs,
as probabilities affect just a small part of the algorithm and nondeterminism is
used to model concurrency between processes by means of interleaving.

Markov Decision Processes Markov Decision Processes

Overview

© Markov Decision Processes
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Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, ti, AP, L) where
> S is a countable set of states with initial distribution ¢y, : S — [0, 1]
> Act is a finite set of actions
» P:S x Act x S — [0, 1], transition probability function such that:

foralls € S and a € Act: Z P(s,a,s') € {0,1}
s'eS

» AP is a set of atomic propositions and labeling L : S — 2AP

g < nondeterministic choice

% <---- probabilistic choice
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Markov decision process (MDP)

Markov decision process
An MDP M is a tuple (S, Act, P, tin;i, AP, L) where

> S, tinit S — [0,1], AP and L are as before, i.e., as for DTMCs, and
> Act is a finite set of actions

» P:S x Actx S — [0, 1], transition probability function such that:

foralls € S and o € Act : ZP(S,(,I,S/) €{0,1}
s'eS

Enabled actions

Let Act(s) = {a € Act|3s’ € S.P(s,a,s’) > 0} be the set of enabled
actions in state s. We require Act(s) # @ for any state s.
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Markov decision process (MDP)
Markov decision process
An MDP M is a tuple (S, Act, P, ti,;:, AP, L) where

> S, tinit : S —[0,1], AP and L are as before, i.e., as for DTMCs, and
» Act is a finite set of actions

> P:S x Act x S — [0, 1], transition probability function such that:

foralls€ Sand o€ Act: Y P(s,a,s') € {0,1}
s’esS

If |[Act(s)| =1 for any state s, then the nondeterministic choice in any

state is over a singleton set. In this case, M is a DTMC. Vice versa, a
DTMC is an MDP such that |Act(s)| = 1 for all s.
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Example: randomized mutual exclusion

> Initial distribution: tinic(S) = 1 and tini(t) = tinss(U) = tini(u) =0
> Set of enabled actions in state s is Act(s) = { «, 5} where

» P(s,a,s) =3, P(s,a,t) =0 and P(s,a, u) = P(s,, v)
» P(s,3,5)=P(s,0,v) =0, and P(s, 3, t) = P(s, B, u) =

> Act(t) = {a} with P(t,a,s) = P(t,a, u) = } and 0 otherwise

1

Z1
2
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Example: randomized mutual exclusion

e 2 concurrent processes Py, P> with 3 phases:

n; noncritical actions of process P;

w; waiting phase of process P;
¢; critical section of process P;

e competition of both processes are waiting

e resolved by a randomized arbiter who tosses a coin

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 12/32



Markov Decision Processes Markov Decision Processes Markov Decision Processes Markov Decision Processes
Randomized mutual exclusion Randomized mutual exclusion

e interleaving of the request operations e [interleaving| of the request operations

e competition if both processes are waiting e competition if both processes are waiting

e randomized arbiter tosses a coin if both are waiting e randomized arbiter tosses a coin if both are waiting
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Randomized mutual exclusion Randomized mutual exclusion

e interleaving of the request operations e interleaving of the request operations

° ‘competition[ if both processes are waiting e competition if both processes are waiting

e randomized arbiter tosses a coin if both are waiting e [randomized arbiter| tosses a coin if both are waiting
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Intuitive operational behavior Overview

Intuitive operational MDP behavior

1. A stochastic experiment according to i, yields starting state sy with

probabilioty ¢;,:(s0) > 0.
2. On entering state s, a nondeterministic choice among Act(s)

determines the next action ¢, say. © Probabilities in MDPs
3. The next state t is randomly chosen with probability P(s, «, t).

4. If t is the unique a-successor of s, then almost surely t is the
successor after selecting «, i.e., P(s, o, t) = 1.

5. Continue with step 2.
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Paths in an MDP Paths in MDPs

State graph

The state graph of MDP M is a digraph G = (V/, E) with V are the
states of M, and (s,s’) € E iff P(s, «, s") > 0 for some o € Act.

An infinite path in an MDP M = (S, Act, P, 1., AP, L) is an infinite
sequence Sp vy S1 2 52 a3 ... € (S X Act)®, written as

a ) a3
T = S —>S1 ——> S — ..

such that P(s;, ajt1,si+1) > 0 for all i > 0. Any finite prefix of 7 that
ends in a state is a finite path.

Let Paths(MM) denote the set of paths in M, and Paths*(M) the set of
finite prefixes thereof.

3 fa% 3
§— 8§ — 88—l —s—u...

a3 o 3 [t
§s— 1 —s—1{—=s
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Probabilities in MDPs Overview

» For DTMC s, a set of infinite paths is equipped with a o-algebra and a
probability measure that reflects the intuitive notion of probabilities
for paths.

» Due to the presence of nondeterminism, MDPs are not augmented
with a unique probability measure.
» Example: suppose we have two coins: a fair one, and a biased one, say
% for heads and % for tails. We select nondeterministically one of the
coins, and are interested in the probability of obtaining tails. This, o
however, is not specified! This also applies if we select one of the two O Policies
coins repeatedly.
» Reasoning about probabilities of sets of paths of an MDP relies on
the resolution of nondeterminism. This resolution is performed by a
policy.! A policy chooses in any state s one of the actions a € Act(s).

! Also called scheduler, strategy or adversary.
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Policies Induced Markov chain

Policy

Let M = (S, Act, P, 11, AP, L) be an MDP. A policy for M is a function
S : ST — Act such that G(sgs; .. .sn) € Act(s,) for all sps1...s, € ST,

The path

aq an a3
T = S ——>S —> S — ...

is called a G-path if aj = S(sp...sj—1) for all i > 0.

________________________________________________________________|
For any scheduler, the actions are omitted from the history sy sy ...s,. This is not
a restriction as for any sequence sy 53 . .. S, the relevant actions «; are given by
ajy1 = 6(sps1...5;). Hence, the scheduled action sequence can be constructed
7o) [PRELES @F 02 P21 EG etk Each policy induces an infinite DTMC. States are finite prefixes of paths in

the MDP. Nondeterministic choices are all resolved according to the policy.
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Induced DTMC of an MDP by a policy

DTMC of an MDP induced by a policy

Let M = (S, Act, P, ti5, AP, L) be an MDP and & a policy on M. The
DTMC induced by &, denoted Mg, is given by

MG = (5+, PG, Linitl AP, L/)

where for o = sps1...5,: Ps(0, osp11) = P(sn, 6(0), sp41) and
L'(o) = L(sn).

|
Mg is infinite, even if the MDP M is finite. Intuitively, state sy s ...s, of
DTMC Mg represents the configuration where the MDP M is in state s, and
S0 S1 - --Sp—1 stands for the history. Since policy & might select different actions
for finite paths that end in the same state s, a policy as defined above is also
referred to as history-dependent.
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Example induced DTMC

e

Induced DTMC for a policy that alternates between selecting red and green.
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Example MDP

Consider a policy that alternates between selecting red and green, starting
with red.
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MDP paths versus paths in the induced DTMC

|
There is a one-to-one correspondence between the G-paths of the MDP
M and the paths in the Markov chain Mg.

|
For G-path 7 = sp —5 51 — ..., the corresponding path in DTMC Mg is:

7% = Fo71 7 ... where 7T = s9S1...5,

Vice versa, for a path To 7Ty T ... in the DTMC Mg, g = so for some state sq
such that ¢i,5(so) > 0 and, for each n > 0, T, = 7,_1 s, for some state s, in the
MDP M such that P(s,_1, 5(7p—1), sn) > 0. Hence:

&(m)  &(m)  &(m)
—> S] — > S —— ...

S0

is a G-path in M.
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Probability measure on MDP

Probability measure on MDP

Let Prg‘, or simply Pr®, denote the probability measure Pr*'s associated
with the DTMC Mg.

This measure is the basis for associating probabilities with events in the
MDP M. Let, e.g.,, P C (2AP)W be an w-regular property. Then Pro(P) is
defined as:

PrP(P) = PMs(P) = Pryg{m € Paths(Mg) | trace(r) € P }.

Similarly, for fixed state s of M, which is considered as the unique starting

state,
Pr(s = P) = PrMe{x c Paths(s) | trace(r) € P}

where we identify the paths in Mg with the corresponding G-paths in M.
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Overview

© Summary
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Positional policy

Positional policy

Let M be an MDP with state space S. Policy & on M is positional (or:
memoryless) iff for each sequence sys; ...s, and toty ...t € ST with
Sn = tm:

S(sos1---5n) = S(totr...tm).

In this case, & can be viewed as a function & : S — Act.

|
Policy & is positional if it always selects the same action in a given state. This
choice is independent of what has happened in the history, i.e., which path led to
the current state.
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Summary

Important points

1. An MDP is a model exhibiting nondeterminism and probabilities.

2. Nondeterminism is important for e.g., randomized distributed
algorithms

3. Policies are functions that select enabled actions in states.

4. A policy on an MDP induces an infinite DTMC, even if the MDP is
finite.

5. Probability measures on MDP paths are defined using indiced DTMC
paths.

6. A positional policy selects in a state always the same action.
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