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Markov decision process (MDP)

Markov decision processes

I In MDPs, both nondeterministic and probabilistic choices coexist.
I MDPs are transition systems in which in any state a nondeterministic

choice between probability distributions exists.
I Once a probability distribution has been chosen nondeterministically,

the next state is selected probabilistically—as in DTMCs.
I Any MC is thus an MDP in which in any state the probability

distribution is uniquely determined.

Randomized distributed algorithms are typically appropriately modeled by MDPs,
as probabilities affect just a small part of the algorithm and nondeterminism is
used to model concurrency between processes by means of interleaving.
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Markov decision process (MDP)
Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where

I S is a countable set of states with initial distribution ιinit : S → [0, 1]

I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.
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Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where

I S, ιinit : S → [0, 1], AP and L are as before, i.e., as for DTMCs, and
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

Enabled actions
Let Act(s) = {α ∈ Act | ∃s ′ ∈ S.P(s,α, s ′) > 0 } be the set of enabled
actions in state s. We require Act(s) 6= ∅ for any state s.
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An example MDP

I Initial distribution: ιinit(s) = 1 and ιinit(t) = ιinit(u) = ιinit(u) = 0
I Set of enabled actions in state s is Act(s) = {α,β } where

I P(s,α, s) = 1
2 , P(s,α, t) = 0 and P(s,α, u) = P(s,α, v) = 1

4
I P(s,β, s) = P(s,β, v) = 0, and P(s,β, t) = P(s,β, u) = 1

2

I Act(t) = {α } with P(t,α, s) = P(t,α, u) = 1
2 and 0 otherwise
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Paths in an MDP

State graph
The state graph of MDPM is a digraph G = (V ,E ) with V are the
states of M, and (s, s ′) ∈ E iff P(s,α, s ′) > 0 for some α ∈ Act.

Paths
An infinite path in an MDPM = (S,Act,P, ιinit,AP, L) is an infinite
sequence s0 α1 s1 α2 s2 α3 . . . ∈ (S × Act)ω, written as

π = s0
α1−→ s1

α2−→ s2
α3−→ . . . ,

such that P(si ,αi+1, si+1) > 0 for all i > 0. Any finite prefix of π that
ends in a state is a finite path.
Let Paths(M) denote the set of paths inM, and Paths∗(M) the set of
finite prefixes thereof.
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Policies

Policy
LetM = (S,Act,P, ιinit,AP, L) be an MDP. A policy forM is a function
S : S+ → Act such that S(s0 s1 . . . sn) ∈ Act(sn) for all s0 s1 . . . sn ∈ S+.
The path

π = s0
α1−→ s1

α2−→ s2
α3−→ . . .

is called a S-path if αi = S(s0 . . . si−1) for all i > 0.

For any policy, the actions are omitted from the history s0 s1 . . . sn. This is not a
restriction as for any sequence s0 s1 . . . sn the relevant actions αi are given by
αi+1 = S(s0 s1 . . . si ). Hence, the scheduled action sequence can be constructed
from prefixes of the path at hand.
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Induced DTMC of an MDP by a policy
DTMC of an MDP induced by a policy
LetM = (S,Act,P, ιinit,AP, L) be an MDP and S a policy onM. The
DTMC induced by S, denotedMS, is given by

MS = (S+,PS, ιinit,AP, L′)

where for σ = s0s1 . . . sn: PS

(
σ, σ sn+1

)
= P

(
sn, S(σ), sn+1

)
and

L′(σ) = L(sn).

MS is infinite, even if the MDPM is finite. Intuitively, state s0 s1 . . . sn of
DTMCMS represents the configuration where the MDPM is in state sn and
s0 s1 . . . sn−1 stands for the history. Since policy S might select different actions
for finite paths that end in the same state s, a policy as defined above is also
referred to as history-dependent.
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Example MDP

Consider a policy that alternates between selecting red and green, starting
with red.
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Example induced DTMC

Induced DTMC for a policy that alternates between selecting red and green.
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Probability measure on MDP

Probability measure on MDP
Let PrMS , or simply PrS, denote the probability measure PrMS associated
with the DTMCMS.
This measure is the basis for associating probabilities with events in the
MDPM. Let, e.g., P ⊆

(
2AP)ω be an ω-regular property. Then PrS(P) is

defined as:

PrS(P) = PrMS(P) = PrMS
{π ∈ Paths(MS) | trace(π) ∈ P }.

Similarly, for fixed state s ofM, which is considered as the unique starting
state,

PrS(s |= P) = PrMS
s {π ∈ Paths(s) | trace(π) ∈ P }

where we identify the paths inMS with the corresponding S-paths inM.
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Positional policy

Positional policy
LetM be an MDP with state space S. Policy S onM is positional (or:
memoryless) iff for each sequence s0 s1 . . . sn and t0 t1 . . . tm ∈ S+ with
sn = tm:

S(s0 s1 . . . sn) = S(t0 t1 . . . tm).

In this case, S can be viewed as a function S : S → Act.

Policy S is positional if it always selects the same action in a given state. This
choice is independent of what has happened in the history, i.e., which path led to
the current state.
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Finite-memory policy

Finite-memory policy
LetM be an MDP with state space S and action set Act. A
finite-memory policy S forM is a tuple S = (Q, act,∆, start) where

I Q is a finite set of modes,
I ∆ : Q × S → Q is the transition function,
I act : Q × S → Act is a function that selects an action

act(q, s) ∈ Act(s) for any mode q ∈ Q and state s ∈ S ofM,
I start : S → Q is a function that selects a starting mode for state

s ∈ S.
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An MDP under a finite-memory policy

The behavior of an MDPM under a fm-policy S = (Q, act,∆, start) is:
I Initially, a starting state s0 is randomly determined according to the

initial distribution ιinit, i.e., ιinit(s0) > 0.
I The fm-policy S initializes its DFA to the mode q0 = start(s0) ∈ Q.
I IfM is in state s and the current mode of S is q, then the decision

of S, i.e., the selected action, is α = act(q, s) ∈ Act(s).
I The policy changes to mode ∆(q, s), whileM performs the selected

action α and randomly moves to the next state according to the
distribution P(s,α, ·).
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Finite-memory policies

Relation fm-policy to definition policy
An fm-policy S = (Q, act,∆, start) is identified with policy,
S′ : Paths∗ → Act which is defined as follows.
1. For the starting state s0, let S′(s0) = act(start(s0), s0).
2. For path fragment π̂ = s0 s1 . . . sn let

S′(π̂) = act(qn, sn)

where q0 = start(s0) and qi+1 = ∆(qi , si ) for 0 6 i 6 n.

Positional policies can be considered as fm-policies with just a single mode.
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The DTMC under an fm-policy

Remark
For fm-policy S, the DTMCMS can be identified with a DTMC where
the states are just pairs 〈s, q〉 where s is a state in the MDPM and q a
mode of S.
Formally,M′S is the DTMC with state space S × Q, labeling
L′(〈s, q〉) = L(s), the starting distribution ιinit, and the transition
probabilities:

P′S(〈s, q〉, 〈t, p〉) = P(s, act(q, s), t).

For any MDPM and fm-policy S:MS ∼p M′S.

Hence, ifM is a finite MDP, then we considerMS as a finite MC.
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Positional versus fm-policies
Positional policies are insufficient for ω-regular properties
Consider the MDP:

Positional policy Sα always chooses α in state s0
Positional policy Sβ always chooses β in state s0. Then:

PrSα(s0 |= ♦a ∧ ♦b) = PrSβ (s0 |= ♦a ∧ ♦b) = 0.

Now consider fm-policy Sαβ which alternates between selecting α and β.
Then: PrSαβ (s0 |= ♦a ∧ ♦b) = 1.
Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for ω-regular properties.
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Reachability probabilities
Reachability probabilities
LetM be an MDP with state space S and S be a policy onM. The
reachability probability of G ⊆ S from state s ∈ S under policy S is:

PrS(s |= ♦G) = PrMS
s {π ∈ Paths(s) | π |= ♦G }

Maximal and minimal reachability probabilities
The minimal reachability probability of G ⊆ S from s ∈ S is:

Prmin(s |= ♦G) = infS PrS(s |= ♦G)

In a similar way, the maximal reachability probability of G ⊆ S is:

Prmax(s |= ♦G) = supS PrS(s |= ♦G).

where policy S ranges over all, infinitely (countably) many, policies.
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Example

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/54



Reachability Probabilities in Markov Decision Processes Reachability probabilities

Maximal reachability probabilities

MInimal guarantees for safety properties
Reasoning about the maximal probabilities for ♦G is needed, e.g., for
showing that PrS(s |= ♦G) 6 ε for all policies S and some small upper
bound 0 < ε 6 1. Then:

PrS(s |= �¬G) > 1− ε for all policies S.

The task to compute Prmax(s |= ♦G) can thus be understood as showing
that a safety property (namely �¬G) holds with sufficiently large
probability, viz. 1− ε, regardless of the resolution of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/54

Reachability Probabilities in Markov Decision Processes Reachability probabilities

Equation system for max-reach probabilities

Equation system for max-reach probabilities
LetM be a finite MDP with state space S, s ∈ S and G ⊆ S. The vector
(xs)s∈S with xs = Prmax(s |= ♦G) yields the unique solution of the
following equation system:

I If s ∈ G , then xs = 1.
I If s 6|= ∃♦G , then xs = 0.
I If s |= ∃♦G and s 6∈ G , then

xs = max
{ ∑

t∈S
P(s,α, t) · xt | α ∈ Act(s)

}

This is an instance of the Bellman equation for dynamic programming.
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Example
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Value iteration
The previous theorem suggests to calculate the values

xs = Prmax(s |= ♦G)

by successive approximation.
For the states s |= ∃♦G and s 6∈ G , we have xs = limn→∞ x (n)

s where

x (0)
s = 0 and x (n+1)

s = max
{ ∑

t∈S
P(s,α, t) · x (n)

t | α ∈ Act(s)
}
.

Note that x (0)
s 6 x (1)

s 6 x (2)
s 6 . . .. Thus, the values Prmax(s |= ♦G) can

be approximated by successively computing the vectors

( x (0)
s ), ( x (1)

s ), ( x (2)
s ), . . .,

until maxs∈S |x (n+1)
s − x (n)

s | is below a certain (typically very small)
threshold.
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Positional policies for max-reach probabilities

Existence of optimal positional policies
LetM be a finite MDP with state space S, and G ⊆ S. There exists a
positional policy S such that for any s ∈ S it holds:

PrS(s |= ♦G) = Prmax(s |= ♦G).

Proof:
On the blackboard.
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Equation system for min-reach probabilities

Equation system for min-reach probabilities
LetM be a finite MDP with state space S, s ∈ S and G ⊆ S. The vector
(xs)s∈S with xs = Prmin(s |= ♦G) yields the unique solution of the
following equation system:

I If s ∈ G , then xs = 1.
I If Prmin(s |= G) = 0, then xs = 0.
I If Prmin(s |= G) > 0 and s 6∈ G , then

xs = min
{ ∑

t∈S
P(s,α, t) · xt | α ∈ Act(s)

}
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Preprocessing

The preprocessing required to compute the set

Smin
=0 = { s ∈ S | Prmin(s |= ♦G) } = 0

can be performed by graph algorithms. The set Smin
=0 is given by S \ T

where
T =

⋃
n>0

Tn

and T0 = G and, for n > 0:

Tn+1 = Tn ∪ { s ∈ S | ∀α ∈ Act(s) ∃t ∈ Tn.P(s,α, t) > 0 }.

As T0 ⊆ T1 ⊆ T2 ⊆ . . . ⊆ S and S is finite, the sequence (Tn)n>0
eventually stabilizes, i.e., for some n > 0, Tn = Tn+1 = . . . = T .
Then: Prmin(s |= ♦G) > 0 if and only if s ∈ T .
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Preprocessing
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Positional policies for min-reach probabilities

Existence of optimal positional policies
LetM be a finite MDP with state space S, and G ⊆ S. There exists a
positional policy S such that for any s ∈ S it holds:

PrS(s |= ♦G) = Prmin(s |= ♦G).

Proof:
Similar to the case for maximal reachability probabilities.
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Example value iteration

Determine Prmin(si |= ♦{ s2 }).
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Example value iteration

Determine
Prmin(si |= ♦{ s2 })

1. G = { s2 }, Smin
=0 = { s3 },S \ (G ∪ Smin

=0 ) = { s0, s1 }.

2. ( x (0)
s ) = (0, 0, 1, 0)

3. ( x (1)
s ) = (min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0)

4. = (0, 0.4, 1, 0)

5. ( x (2)
s ) = (min(1·0.4, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0.4+0.4·1, 1, 0)

6. = (0.4, 0.6, 1, 0)

7. ( x (3)
s ) = . . . . . .
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Example value iteration

Determine
Prmin(si |= ♦{ s2 })
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Optimal positional policy

Positional policies Smin and Smax thus yield:

PrSmin(s |= ♦G) = Prmin(s |= ♦G) for all states s ∈ S
PrSmax(s |= ♦G) = Prmax(s |= ♦G) for all states s ∈ S

These policies are obtained as follows:

Smin(s) = argmin{
∑
t∈S

P(s,α, t)·Prmin(t |= ♦G) | α ∈ Act }

Smax(s) = argmax{
∑
t∈S

P(s,α, t)·Prmax(t |= ♦G) | α ∈ Act }
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Optimal positional policy

I Outcome of the value iteration ( xs ) = ( 23 ,
14
15 , 1, 0)

I How to obtain the optimal policy from this result?
I xs0 = min(1· 1415 , 0.5·1 + 0.25·0+0.25· 23 )

min( 1415 ,
2
3 )

I Thus the optimal policy always selects red.
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Induced DTMC

I Outcome of the value iteration ( xs ) = ( 23 ,
14
15 , 1, 0)

I How to obtain the optimal policy from this results?
I xs0 = min(1· 1415 , 0.5·1 + 0.5·0+0.25· 23 )

min( 1415 ,
2
3 )

I Thus the optimal policy always selects red.

An alternative to value iteration is linear programming.
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Linear programming
Linear programming
Let x1, . . . , xn be real-valued variables. Maximise (or minimise) the
objective function:

c1·x1 + c2·x2 + . . .+ cn·xn for constants c1, . . . , cn ∈ R

subject to the constraints

a11·x1 + a12·x2 + . . .+ a1n·xn 6 b1
. . . . . .

am1·x1 + am2·x2 + . . .+ amn·xn 6 bm.

Solution techniques: e.g., Simplex, ellipsoid method, interior point method.

Linear programming
Optimisation of a linear objective function subject to linear (in)equalities.
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Maximal reach probabilities as a linear program
Linear program for max-reach probabilities
Consider a finite MDP with state space S, and G ⊆ S. The values
xs = Prmax(s |= ♦G) are the unique solution of the linear program:

I If s ∈ G , then xs = 1.
I If s 6|= ∃♦G , then xs = 0.
I If s 6|= ∃♦G and s 6∈ G , then 0 6 xs 6 1 and for all α ∈ Act(s):

xs >
∑
t∈S

P(s,α, t) · xt

where
∑
s∈S

xs is minimal.

Proof:
See lecture notes.
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Minimal reach probabilities as a linear program
Linear program for min-reach probabilities
Consider a finite MDP with state space S, and G ⊆ S. The values
xs = Prmin(s |= ♦G) are the unique solution of the linear program:

I If s ∈ G , then xs = 1.
I If Prmin(s |= ♦G) = 0, then xs = 0.
I If Prmin(s |= ♦G) > 0 and s 6∈ G then 0 6 xs 6 1 and for all
α ∈ Act(s):

xs 6
∑
t∈S

P(s,α, t) · xt

where
∑
s∈S

xs is maximal.

Proof:
See lecture notes.
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Example linear programming

Determine
Prmin(si |= ♦{ s2 })

I G = { s2 }, Smin
=0 = { s3 },S \ (G ∪ Smin

=0 ) = { s0, s1 }.
I Maximise x0 + x1 subject to the constraints:

x0 6 x1
x0 6 1

4 ·x0 + 1
2

x1 6 1
10 ·x0 + 1

2 ·x1 + 2
5
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Example linear programming
I G = { s2 }, Smin

=0 = { s3 },S \ (G ∪ Smin
=0 ) = { s0, s1 }.

I Maximise x0 + x1 subject to the constraints:

x0 6 x1
x0 6 2

3

x1 6 2
5 ·x0 + 4

5
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Example linear programming
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Value iteration vs. linear programming

This curve shos how the value iteration approach approximates the solution.
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Time complexity

Time complexity
For finite MDPM with state space S, G ⊆ S and s ∈ S, the values
Prmax(s |= ♦G) can be computed in time polynomial in the size ofM.
The same holds for Prmin(s |= ♦G).

Proof:
Thanks to the characterisation as a linear program and polynomial time
techniques to solve such linear programs such as ellipsoid methods.

Corollary
For finite MDPs, the question whether PrS(s |= ♦G) 6 p for some
rational p ∈ [0, 1[ is decidable in polynomial time.
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Policy iteration

Value iteration
In value iteration, we iteratively attempt to improve the minimal (or maximal)
reachability probabilities by starting with an underestimation, viz. zero for all
states.

Policy iteration
In policy iteration, the idea is to start with an arbitrary positional policy and
improve it in a step-by-step fashion, so as to determine the optimal one.
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Policy iteration

Policy iteration

1. Start with an arbitrary positional policy S that selects some
α ∈ Act(s) for each state s.

2. Compute the reachability probabilities PrS(s |= ♦G). This amounts
to solve a linear equation system on DTMCMS.

3. Improve the policy in every state according to the following rules:

S(i+1)(s) = argmin{
∑
t∈S

P(s,α, t)·PrS(i)
(t |= ♦G) | α ∈ Act } or

S(i+1)(s) = argmax{
∑
t∈S

P(s,α, t)·PrS(i)
(t |= ♦G) | α ∈ Act }

4. Repeat steps 2. and 3. until the policy does not change.
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Policy iteration: example

I Let G = { s2 }.
I Consider an arbitrary policy S.
I Compute xi = PrS(si |= ♦G) for all i .
I Then: x2 = 1, x3 = 0,

and x0 = x1, x1 = 1
10 ·x0+ 1

2 ·x1+ 2
5 .

I This yields x0 = x1 = x2 = 1 and x3 = 0.
I Change policy S in s0, yielding policy S′.
I This yields min(1·1, 12 ·1+ 1

4 ·0 + 1
4 ·1)

that is, min(1, 34 ) = frac34.
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Policy iteration: example

I Let G = { s2 }.
I Consider the adapted policy S′.

I Compute xi = PrS
′
(si |= ♦G) for all i .

I Then: x2 = 1, x3 = 0,

and x0 = 1
4 ·x0+ 1

2 , x1 = 1
10 ·x0+ 1

2 ·x1+ 2
5 .

I This yields x0 = 2
3 , x1 = 14

15 , x2 = 1 and
x3 = 0.

I This policy is optimal.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 51/54

Reachability Probabilities in Markov Decision Processes Reachability probabilities

Graphical representation of policy iteration

where A denotes policy S and A′ policy S′.
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Summary

Important points

1. Maximal reachability probabilities are suprema over reachability
probabilities for all, potentially infinitely many, policies.

2. They are characterised by equation systems with maximal operators.
3. There exists a positional policy that yields the maximal reachability

probability.
4. Such policies can be determined using value or policy iteration.
5. Or, alternatively, in polynomial time using linear programming.
6. Positional policies are not powerful enough for arbitrary ω-regular

properties.
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