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Overview Markov decision process (MDP)

@ Markov Decision Processes Markov decision processes

» In MDPs, both nondeterministic and probabilistic choices coexist.

» MDPs are transition systems in which in any state a nondeterministic
choice between probability distributions exists.

» Once a probability distribution has been chosen nondeterministically,
the next state is selected probabilistically—as in DTMCs.

» Any MC is thus an MDP in which in any state the probability
distribution is uniquely determined.

|
Randomized distributed algorithms are typically appropriately modeled by MDPs,
as probabilities affect just a small part of the algorithm and nondeterminism is
used to model concurrency between processes by means of interleaving.
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Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, ti, AP, L) where

> S is a countable set of states with initial distribution ¢y, : S — [0, 1]
» Act is a finite set of actions

» P:Sx Actx S — [0,1], transition probability function such that:

foralls€ Sand a € Act: > P(s,a,s') € {0,1}
s’eS

» APis a set of atomic propositions and labeling L : § — 24P,

g < nondeterministic choice

1
3

<---- probabilistic choice
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Markov Decision Processes

An example MDP

» Initial distribution: ti,;(s) = 1 and ¢ini(t) = tinie () = tinie(u) =0
> Set of enabled actions in state s is Act(s) = { a, 0} where

» P(s,a,s) = % P(s,a,t) =0 and P(s, o, u) = P(s, o, v)
» P(s,8,5s)=P(s,8,v) =0, and P(s, 5,t) = P(s, 0, u) =

> Act(t) = {a} with P(t,a,s) = P(t,a, u) = } and 0 otherwise

Nl |
=
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Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, tin;i, AP, L) where

S, tinit ' S —[0,1], AP and L are as before, i.e., as for DTMCs, and
Act is a finite set of actions

P:S x Act xS — [0, 1], transition probability function such that:

foralls € S and o € Act : ZP(S,(,L,S/)E{O,I}

s'eS

Enabled actions

Let Act(s) = {a € Act|3s’ € S.P(s,a,s’) > 0} be the set of enabled
actions in state s. We require Act(s) # @ for any state s.

Joost-Pieter Katoen
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@ Probabilities in MDPs
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Paths in an MDP

State graph

The state graph of MDP M is a digraph G = (V/, E) with V are the
states of M, and (s,s’) € E iff P(s, «, s") > 0 for some « € Act.

An infinite path in an MDP M = (S, Act, P, 1., AP, L) is an infinite
sequence sp vy S1 2 2 3. .. € (S X Act)”, written as

a1 a2 a3
T = S —>S1 —> S — ..

such that P(s;, ajt1,si+1) > 0 for all i > 0. Any finite prefix of 7 that
ends in a state is a finite path.

Let Paths(M) denote the set of paths in M, and Paths*(M) the set of
finite prefixes thereof.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Reachability Probabilities in Markov Decision Processes Policies

Reachability Probabilities in Markov Decision Processes Policies

Overview

© Policies

@ Positional policies
@ Finite-memory policies
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Policies

Let M = (S, Act, P, tin5, AP, L) be an MDP. A policy for M is a function
S : ST — Act such that G(sg sy .. .sn) € Act(s,) for all spsy...s, € ST,

The path

aq an a3
T = S —>S5 —> S — ...

is called a G-path if a; = S(sp...s;—1) for all i > 0.

|
For any policy, the actions are omitted from the history sp sy ...s,. This is not a
restriction as for any sequence sy s . .. S, the relevant actions «; are given by
ajy1 = 6(sps1...5;). Hence, the scheduled action sequence can be constructed
from prefixes of the path at hand.
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Induced DTMC of an MDP by a policy

DTMC of an MDP induced by a policy

Let M = (S, Act, P, L5, AP, L) be an MDP and & a policy on M. The
DTMC induced by &, denoted M, is given by

MG — (S+, PG, LinitYAPY L/)

where for o = sps1...5,: Ps(0, osp11) = P(sn, 6(0), sp+1) and
L'(o) = L(sn).

Mg is infinite, even if the MDP M is finite. Intuitively, state sgs; ... s, of
DTMC Mg represents the configuration where the MDP M is in state s, and
S0 S1---Sp—1 stands for the history. Since policy & might select different actions
for finite paths that end in the same state s, a policy as defined above is also
referred to as history-dependent.
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Example MDP Example induced DTMC

Consider a policy that alternates between selecting red and green, starting
with red.

Induced DTMC for a policy that alternates between selecting red and green.
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Reachability Probabilities in Markov Decision Processes Policies

Probability measure on MDP Positional policy

Probability measure on MDP
Positional policy

Let Prg‘, or simply Pr®, denote the probability measure Pr*'s associated
with the DTMC M. Let M be an MDP with state space S. Policy & on M is positional (or:
memoryless) iff for each sequence sp sy ...s, and toty ...ty € STt with

This measure is the basis for associating probabilities with events in the S, = to:
MDP M. Let, e.g., P C (2AP)W be an w-regular property. Then PrG(P) is G(soS1-..50) = S(toty-..tm).
defined as:

In this case, & can be viewed as a function & : S — Act.
PO(P) = PMe&(P) = Pry{m € Paths(Mg) | trace(r) € P }.
|

Policy & is positional if it always selects the same action in a given state. This
choice is independent of what has happened in the history, i.e., which path led to

Similarly, for fixed state s of M, which is considered as the unique starting
state,

PrS(s = P) = Pri'e{m € Paths(s) | trace(r) € P}

where we identify the paths in Mg with the corresponding G-paths in M.

the current state.
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Finite-memory policy An MDP under a finite-memory policy

Finite-memory policy The behavior of an MDP M under a fm-policy & = (Q, act, A, start) is:

Let M be an MDP with state space S and action set Act. A » Initially, a starting state sy is randomly determined according to the
finite-memory policy & for M is a tuple & = (Q, act, A, start) where initial distribution ;., i.e., Lini(s0) > 0.
» Q is a finite set of modes, » The fm-policy & initializes its DFA to the mode gg = start(s) € Q.
» A: QxS — Q is the transition function, » If M is in state s and the current mode of & is g, then the decision

> act: Q@ X S — Actis a function that selects an action of G, i.e., the selected action, is o = act(q, s) € Act(s).

act(q, s) € Act(s) for any mode g € @ and state s € S of M, » The policy changes to mode A(q, s), while M performs the selected
action o and randomly moves to the next state according to the

» start : S — @ is a function that selects a starting mode for state e
distribution P(s, «, -).

seS.
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Finite-memory policies The DTMC under an fm-policy

Relation fm-policy to definition policy

For fm-policy &, the DTMC Mg can be identified with a DTMC where
the states are just pairs (s, g) where s is a state in the MDP M and q a
mode of G.

Formally, ’6 is the DTMC with state space S x Q, labeling
L'({(s, q)) = L(s), the starting distribution ¢,,;,, and the transition
probabilities:

An fm-policy & = (Q, act, A, start) is identified with policy,
&' : Paths* — Act which is defined as follows.

1. For the starting state sp, let &'(sp) = act(start(sp), o).

2. For path fragment 7 = sys1...5s, let

&'(7) = act(qn, sn
(%) t(qn. sn) Ps((s,q), (t.p)) = P(s,act(q,s),t).

where go = start(sp) and gi+1 = A(qgi, s;) for 0 < i < n.

|
| For any MDP M and fm-policy &: Mg ~p M/G

Positional policies can be considered as fm-policies with just a single mode.

Hence, if M is a finite MDP, then we consider Mg as a finite MC.
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Reachability Probabilities in Markov Decision Processes Policies

Positional versus fm-policies Overview

Positional policies are insufficient for w-regular properties
Consider the MDP:

e P
oW oW o
o v

Positional policy &, always chooses « in state sp

Positional policy &3 always chooses (3 in state sp. Then: @ Reachability probabilities
@ Mathematical characterisation
Prs.(so = Qa A Ob) = Png(SO EOa A Ob) = 0. @ Value iteration

@ Linear programming

Now consider fm-policy &, which alternates between selecting o and /3. o Policy iteration

Then: Prg_,(so = Oa A Ob) = 1.

Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for w-regular properties.
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Reachability probabilities Example

Reachability probabilities

Let M be an MDP with state space S and & be a policy on M. The
reachability probability of G C S from state s € S under policy & is:

PrS(s = 0G) = PrMe{r e Paths(s) | = = 0G}

Maximal and minimal reachability probabilities

The minimal reachability probability of G C S from s € S is:
Prn(s = 0G) = infg Pro(s = 0G)
In a similar way, the maximal reachability probability of G C S is:
Pr®(s = 0G) = supg Pro(s = 0G).

where policy & ranges over all, infinitely (countably) many, policies.
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Maximal reachability probabilities Equation system for max-reach probabilities

Equation system for max-reach probabilities
Minimal euarantees for safetv properties Let M be a finite MDP with state space S, s € S and G C S. The vector
& U (xs)ses with xs = Pr"®(s = O G) yields the unique solution of the

Reasoning about the maximal probabilities for (G is needed, e.g., for following equation system:
showing that PrG(s E OG) < ¢ for all policies & and some small upper > If s € G, then x, = 1.
< 1. :
bound 0 <& < 1. Then > If s £ 30G, then x; = 0.
Pro(s = 0-G) > 1—¢ for all policies &. » If s =30G and s € G, then
The task to compute Pr"®(s |= 0 G) can thus be understood as showing Y = max{ Z P(s,a, t) - x¢ | o€ Act(s) }
that a safety property (namely [0=G) holds with sufficiently large teS

probability, viz. 1 — ¢, regardless of the resolution of nondeterminism.

This is an instance of the Bellman equation for dynamic programming.
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Example Value iteration

The previous theorem suggests to calculate the values
xs = Pr"*™(s = 0G)

by successive approximation.
For the states s = 30G and s ¢ G, we have xs = lim, " where

xX9 =0 and x{"1 = max{ Z P(s,a,t) -x,f") | a € Act(s) }
tes

Note that xs(o) < xs(l) < xs(2) < .... Thus, the values Pr"®(s = 0 G) can

equation system for reachability objective ¢ { w } is: be approximated by successively computing the vectors
2, = land z, = 0 (D), Y, (), L
_ 1. 1. _1 1
rs = max{ 30+t and @y = gws 4 5w, until maxses 3" — x{"| is below a certain (typically very small)
threshold.
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Positional policies for max-reach probabilities

Existence of optimal positional policies

Let M be a finite MDP with state space S, and G C S. There exists a
positional policy & such that for any s € S it holds:

PrS(s = 0G) = Pr™™(s = 0G).

On the blackboard.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems
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Equation system for min-re

ach probabilities

Equation system for min-reach probabilities

Let M be a finite MDP with state space S,se€Sand G CS. The vector
(xs)ses with xs = Pr™"(s = O G) yields the unique solution of the

following equation system:
» If s € G, then xs = 1.
> If PPM"(s |= G) =0, then x; = 0.

> If PF""(s|= G) >0and s &G, then

Xs = min{z P(s,a, t) - x| aeAct(s)}

teS

Joost-Pieter Katoen
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Preprocessing
The preprocessing required to compute the set
Smin — {seS|PM(s=0G)} =0
can be performed by graph algorithms. The set ST is given by S\ T

where
T= T,
n>0

and Tg = G and, for n > 0:
Tht1 = ToU{seS|VacAct(s)dt e T,.P(s,a, t) > 0}.

As To C T; C To C ... C S and S is finite, the sequence (T,)n>0
eventually stabilizes, i.e., forsome n >0, T, =Tpy1=...=T.

Then: P/""(s = 0G) >0 ifandonlyif se&T.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Preprocessing

Algorithm 46 Computing the set of states s

with Pr®(s = 0B) =0

Input: finite MDP M with state space S and B C S

Output: {s = 5| Prmi“(s =¢B)=0}

T := B;
R:=B;
while R # @ do
lett c R;
R=R\{t}h
for all (s,a) € Pre(t) with s ¢ T' do
remove o from Act(s)
if Act(s) = & then
add s to R and T
fi
od
od
return T'

Joost-Pieter Katoen
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Positional policies for min-reach probabilities Example value iteration

Existence of optimal positional policies

Let M be a finite MDP with state space S, and G C S. There exists a
positional policy & such that for any s € S it holds:

PS(s = 0G) = Pr"(s = 0G).

Similar to the case for maximal reachability probabilities.

Determine Pr™i"(s; = 0{ s }).
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Example value iteration Example value iteration
[ XO(n)!X1(n)!X2(n)!X3(n) ]
L G={},ST ={s},5\(GUST) = {s0,5}. = [ 0.000000, 0.000000, 1,

[ 0.000000, 0.400000,

2. (£9)=(0,0,1,0) ,
(1) = [ 0.400000, 0.600000, 1,
3. (xs’) = (min(1-0,0.25-0+0.25-04+-0.5-1), _ L 0.600000. 0.740000
0.1-0+0.5-04+0.4-1,1,0) [ 0.650000, 0.830000,
4. =(0,0.4,1,0) = [ 0.662500, 0.880000, 1,

[ 0.665625, 0.906250,
[ 0.666406, 0.919688,
[0.666602, 0.926484,

o o o O o o o Cc C

5. (x?) = (min(1:0.4,0.25-0+0.25:040.5-1),

S I S 535 S 3 S S
Il
® N A WwN = O

0.1-0+0.5:0.4+0.4-1,1,0)

irl?etermine 6. =(0.4,0.6,1,0) Determine o . o
P (si = O{ =2 }) Prin(s b= 0 5 }) n=20: [0.666667,0.933332,1,0]

n=21: [0.666667,0.933332, 1,01
~[2/3,14/15,1,0]
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Optimal positional policy

Positional policies Gin and Gax thus yield:

PrSmin(s = 0G) = Pr""(s}={OG) forall statesse S
Prom(s = OG) = PrM™(s = (QG) forall statesse S

These policies are obtained as follows:

Gmin(s) = argmin{ Z P(s,a, t)-PrM"(t = 0G) | o € Act }

tesS
Gmax(s) = argmax{ Z P(s,a, t)-Pr"®(t = 0G) | a € Act }
tesS
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 37/54

Optimal positional policy

> Outcome of the value iteration (x; ) = (3, 12, 1,0)

» How to obtain the optimal policy from this result?
1.14

2
14 0.5.1 +0.25.0+0.25-2)

14 2
E'§)

> x5, = min(

min(

» Thus the optimal policy always selects red.
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Induced DTMC

» Outcome of the value iteration (x; ) = (3, 1z, 1,0)

» How to obtain the optimal policy from this results?

1-32,0.5:1 + 0.5-0+0.25-3)

15’

1 2
15" 3

> x5, = min(
min(

» Thus the optimal policy always selects red.

An alternative to value iteration is linear programming.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems
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Linear programming

Linear programming

Let xi,. .., x, be real-valued variables. Maximise (or minimise) the
objective function:

c1-x1+ Cxp+ ...+ cpx, forconstants ci,...,cp, €R
subject to the constraints

a1 X1 +apxe+ ...+ aipxn < b

am1-X1 + am2-x2 + ...+ ampxn < bp.

Solution techniques: e.g., Simplex, ellipsoid method, interior point method.

Linear programming

Optimisation of a linear objective function subject to linear (in)equalities.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/54



Reachability Probabilities in Markov Decision Processes Reachability probabilities

Maximal reach probabilities as a linear program

Linear program for max-reach probabilities

Consider a finite MDP with state space S, and G C S. The values
xs = Pr"®(s = 0 G) are the unique solution of the linear program:
» If s € G, then x; = 1.
> If s £ 30G, then x; = 0.
> If s = 30G and s € G, then 0 < xs < 1 and for all a € Act(s):

where 3" xs is minimal.

seS

See lecture notes.

Joost-Pieter Katoen

Xs = Z P(s,a, t) - x¢
tes

Modeling and Verification of Probabilistic Systems 41/5

Reachability Probabilities in Markov Decision Processes Reachability probabilities

Example linear programming

Determine

PP (s b= 0{ %2 })

Joost-Pieter Katoen

> G={}, S0 ={s},S\(GUST) = {s0,5}.

> Maximise xg + x1 subject to the constraints:

X < X1

1 1
X0 < 2 X0 + 5

1 1 2
x1 < X0+ 3x1+ 5

Modeling and Verification of Probabilistic Systems
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Minimal reach probabilities as a linear program

Linear program for min-reach probabilities

Consider a finite MDP with state space S, and G C S. The values
xs = Pr""(s = OG) are the unique solution of the linear program:
> If s € G, then xs = 1.
> If Prmi”(s = 0G) =0, then x; = 0.
> If PF""(s |= 0G) >0and s ¢ G then 0 < x; < 1 and for all

a € Act(s):
Xs < Z P(s,a, t) x:
teS
where > xs is maximal.
seS
Proof:
See lecture notes.
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Example linear programming

> GZ{SQ},SEJ)n:{S;;},S\(GU 26")2{50,51}.

» Maximise xp + x3 subject to the constraints:

X < X1
x < 3
x < Exo+i
X, X X
1 1 1
Xo = Xy 0.8
Xo = 2/3 X; = 0.2-Xg
+ 0.8
0 X 0 X 0
0 1 0 0 2/3 1 ° 0 1
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Example linear programming
X, X, X,
1 1 1
Xo = X 0.8

Xg<2/3 X; < 0.2-Xg
+0.8

0.8 ] [ Solution:

may' (Xg, X1)

(2/3, 14/15)

0 2/3 1

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems
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Value iteration vs. linear programming

[ X6, %, ™, %, x,® |

[ 0.000000, 0.000000, 1, 0]
[ 0.000000, 0.400000, 1, 0]
[ 0.400000, 0.600000, 1, 0]
[ 0.600000, 0.740000, 1, 0]
[ 0.650000, 0.830000, 1, 0]
[ 0.662500, 0.880000, 1, 0]
[ 0.665625, 0.906250, 1, 0]
[ 0.666406, 0.919688, 1, 0]
[ 0.666602, 0.926484, 1, 0]

Xy

S 3 3 3 3 5 S 5 S
I
x® N A WN 7o

0 _ _ _ - [ 0.666667, 0.933332,1,0]
0 2/3 Xo  n=21" [0.666667,0.933332,1,0]
~[2/3,14/15,1,0]

]
|
"]
=

This curve shos how the value iteration approach approximates the solution.
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Time complexity

Time complexity

For finite MDP M with state space S, G C S and s € S, the values
Pr"®(s = 0 G) can be computed in time polynomial in the size of M.
The same holds for Pr™'"(s = 0 G).

Proof:

Thanks to the characterisation as a linear program and polynomial time
techniques to solve such linear programs such as ellipsoid methods.

Corollary

For finite MDPs, the question whether Pr@i(s E OG) < p for some
rational p € [0, 1] is decidable in polynomial time.
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Policy iteration

Value iteration

In value iteration, we iteratively attempt to improve the minimal (or maximal)
reachability probabilities by starting with an underestimation, viz. zero for all
states.

Policy iteration

In policy iteration, the idea is to start with an arbitrary positional policy and
improve it in a step-by-step fashion, so as to determine the optimal one.
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Policy iteration

Reachability probabilities

Reachability Probabilities in Markov Decision Processes

Policy iteration: example

Policy iteration

1. Start with an arbitrary positional policy & that selects some

a € Act(s) for each state s.

. Compute the reachability probabilities Pr(s = ¢'G). This amounts

to solve a linear equation system on DTMC Mg.

&+(s) = argmin{}_ P(s,a,t)-Pr""(t |- 0G) | a € Act} or

teS

Improve the policy in every state according to the following rules:

&(t1(s) = argmax{}_ P(s,c. t)-Pr"(t = 0G) | a € Act}

teS

4. Repeat steps 2. and 3. until the policy does not change.

Joost-Pieter Katoen

Reachability Probabilities in Markov Decision Processes

Modeling and Verification of Probabilistic Systems

Reachability probabilities

Let G={s}.

» Consider an arbitrary policy &.
Compute x; = Pre(s,- E OG) for all i.
Then: x» =1, x3 =0,

and xp = x1, Xy = l—looonr%oler%.

This yields xp = x1 = x, =1 and x3 = 0.

Change policy & in sg, yielding policy &'.
> This yields min(1-1, 3-1+1-0 + 1.1)
frac34.

that is, min(1, 3)
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Policy iteration: example

0.5 g
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| 4

Joost-Pieter Katoen

Let G ={s}.
Consider the adapted policy &'.
Compute x; = Prel(s,- E 0G) for all /.

Then: x» =1, x3 =0,

1 1 1 1 2
and X0 — 1’X0+§, X1 = E'XO"-z'X]_‘I—g.

14

This yields x; = % X1 =15, X2 = 1 and

X3:0.

This policy is optimal.

Modeling and Verification of Probabilistic Systems

Graphical representation of policy iteration

bmln:U

7 os

/
/

X, O
0

XO - X]
xo = 2/3

4
X
=]

2/3 1
where A denotes policy & and A’ policy &'.
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Overview Summary

Important points

1. Maximal reachability probabilities are suprema over reachability
probabilities for all, potentially infinitely many, policies.

They are characterised by equation systems with maximal operators.
There exists a positional policy that yields the maximal reachability
probability.

Such policies can be determined using value or policy iteration.

Or, alternatively, in polynomial time using linear programming.

Positional policies are not powerful enough for arbitrary w-regular
properties.

© Summary
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