
logoRWTH

Model Checking MDPs

Modeling and Verification of Probabilistic Systems
Lecture 13: Model Checking MDPs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/mvps11/

June 6, 2011

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/32

Model Checking MDPs

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/32

Model Checking MDPs

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It can also be used to specify properties over MDPs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
I ranges over all possible resolutions of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/32

Model Checking MDPs

PCTL syntax [Bianco & De Alfaro, 1995]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.
Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/32

http://www-i2.informatik.rwth-aachen.de/i2/mvps11/

Model Checking MDPs

Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅.
I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2 where n ∈ IN.

Intuitive semantics
I s0α0s1α1s2α2 . . . |= ΦU6n Ψ if Φ holds until Ψ holds within n steps

(where siαi is a single step).
I s |= PJ(ϕ) if probability under all policies that paths starting in s

fulfill ϕ lies in J .
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 5/32

Model Checking MDPs PCTL Semantics

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/32

Model Checking MDPs PCTL Semantics

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where

I S is a countable set of states with initial distribution ιinit : S → [0, 1]

I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/32

Model Checking MDPs PCTL Semantics

PCTL semantics (1)
Notation
M, s |= Φ if and only if state-formula Φ holds in state s of (possibly
infinite) MDPM. AsM is known from the context we simply write
s |= Φ.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)

s |= PJ(ϕ) iff for all policies S onM.PrS(s |= ϕ) ∈ J

where PrS(s |= ϕ) = PrSs {π ∈ Paths(s) | π |= ϕ }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/32

Model Checking MDPs PCTL Semantics

Semantics of P-operator

The probabilistic operator PJ(·) imposes probability bounds for all policies.
In particular, we have

s |= P6p(ϕ) iff Prmax(s |= ϕ) 6 p iff supSPrS(s |= ϕ) 6 p

and, dually,

s |= P>p(ϕ) iff Prmin(s |= ϕ) > p iff infSPrS(s |= ϕ) > p.

For finite MDPs we have:

Prmax(s |= ϕ) = maxSPrS(s |= ϕ) and Prmin(s |= ϕ) = minSPrS(s |= ϕ).

since for any finite MDP there exists an fm-policy that maximises or
minimises ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/32

Model Checking MDPs PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let π = s0 α0 s1 α1 s2 α2 . . . be an infinite path in (possibly infinite) MDP
M. Recall that π[i] = si denotes the (i+1)-st state along π.
The satisfaction relation |= is defined for state formulas by:

π |=©Φ iff s1 |= Φ

π |= ΦUΨ iff ∃k > 0.(π[k] |= Ψ ∧ ∀0 6 i < k. π[i] |= Φ)

π |= ΦU6n Ψ iff ∃k > 0.(k 6 n ∧ π[k] |= Ψ∧
∀0 6 i < k. π[i] |= Φ)

There is indeed no difference with the PCTL semantics for DTMC paths.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/32

Model Checking MDPs PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.

The converse, however, does not hold. For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ). But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but

s |= ¬P>p(ϕ) iff not
(

PrS(s |= ϕ) > p for all policies s S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/32

Model Checking MDPs PCTL Model Checking

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/32

Model Checking MDPs PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/32

Model Checking MDPs PCTL Model Checking

Core model checking algorithm

Propositional formulas
Sat(·) is defined by structural induction as for PCTL on DTMCs.

Probabilistic operator P

In order to determine whether s ∈ Sat(P6p(ϕ)), the probability
Prmax(s |= ϕ) needs to be established. Then

Sat(P6p(ϕ)) =
{
s ∈ S | Prmax(s |= ϕ) 6 p

}
.

The same holds for strict upper bounds < p.
Similarly, lower bounds amount to determining Prmin(s |= ϕ), e.g.,

Sat(P>p(ϕ)) =
{
s ∈ S | Prmin(s |= ϕ) > p

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/32

Model Checking MDPs PCTL Model Checking

The next-step operator

Recall that: s |= P6p(©Φ) if and only if Prmax(s |=©Φ)6 p.

Lemma
Prmax(s |=©Φ) = max

{ ∑
t ∈ Sat(Φ)

P(s,α, t) | α ∈ Act(s)
}
.

Algorithm
Determine xs = Prmax(s |=©Φ) and return Sat(Ψ) = { s ∈ S | xs 6 p }.

The case for minimal probabilities is similar and omitted here.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/32

Model Checking MDPs PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }
2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0
3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

 ·
 0

0
1
0

 =


0
0
0.5
1
0


4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/32

Model Checking MDPs PCTL Model Checking

Bounded until (1)

Recall that: s |= P>p(ΦU6n Ψ) if and only if Prmin(s |= ΦU6n Ψ)> p.

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S
P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)

}
otherwise

The case for maximal probabilities is analogous.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/32

Model Checking MDPs PCTL Model Checking

Bounded until (2)
Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S

P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)
}

otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix ofM[S=0 ∪ S=1].
2. Then

(
Prmin(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Prmin(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Prmin(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total and n minimum
operators.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/32

Model Checking MDPs PCTL Model Checking

Example

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/32

Model Checking MDPs PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/32

Model Checking MDPs Complexity

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/32

Model Checking MDPs Complexity

Time complexity
Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of PCTL model checking of MDPs
For finite MDPM and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
(

poly(size(M)) · nmax · |Φ|
)

where nmax = max{ n | Ψ1 U6nΨ2 occurs in Φ } with and nmax = 1 if Φ
does not contain a bounded until-operator.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |Φ|.

2. The worst-case operator is until.
2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear programs with polynomial complexity

exist.Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/32

Model Checking MDPs Example: Dining Cryptographers Problem

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/32

Model Checking MDPs Example: Dining Cryptographers Problem

Dining cryptographers problem [Chaum, 1988]

Problem statement
I Three cryptographers gather around a table for dinner.
I The waiter informs them that the meal has been paid by someone,

who could be one of the cryptographers or their master.
I The cryptographers respect each other’s right to make an anonymous

payment, but want to find out whether the master paid or not.

Is it possible to obtain this information without revealing the identity of
the cryptographer that paid?

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/32

Model Checking MDPs Example: Dining Cryptographers Problem

Dining cryptographers problem

Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the
cryptographer on the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the
one it flipped and the one the left-hand neighbour flipped—are the
same (agree) or different (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead
states the opposite (disagree if the coins are the same and agree if the
coins are different).

Claim
An odd number of agrees indicates that the master paid, while an even
number indicates that a cryptographer paid.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/32

Model Checking MDPs Example: Dining Cryptographers Problem

Dining cryptographers problem

Example scenario in which master paid (left) or cryptographer A paid
(right) and provides a misleading vote.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/32

Model Checking MDPs Example: Dining Cryptographers Problem

Dining cryptographers problem
Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the cryptographer on
the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the one it
flipped and the one the left-hand neighbour flipped—are the same (agree) or
different (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead states the
opposite (disagree if the coins are the same and agree if the coins are different).

Generalisation
The dining cryptographer’s protocol can be generalised to any number N of
cryptographer. Then:

I if N is odd, then an odd number of agrees indicates that the master paid
while an even number indicates that a cryptographer paid.

I if N is even, then an even number of agrees indicates that the master paid
while an odd number indicates that a cryptographer paid.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/32

Model Checking MDPs Example: Dining Cryptographers Problem

MDP generation times

The number of states and transitions in the MDP representing the model
for the dining cryptographers problem with N cryptographers.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/32

Model Checking MDPs Example: Dining Cryptographers Problem

Checking correctness

pay ⇒ P=1 (♦(done ∧ par = N%2)) ∧ ¬pay ⇒ P=1 (♦(done ∧ par 6= N%2)).
That is: if the master paid, the parity of the number of agrees matches the parity
of N and, if a cryptographer paid, it does not.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/32

Model Checking MDPs Example: Dining Cryptographers Problem

Checking anonymity

To verify anonymity—when a cryptographer pays then no cryptographer can tell
which one has paid—we check that any possible combination of agree and
disagree has the same likelihood no matter which of the cryptographers pays.
This needs to be checked for all 2N possible outcomes. Above the results are
listed for one possible outcome.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/32

Model Checking MDPs Summary

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/32

Model Checking MDPs Summary

Summary

I PCTL is a variant of CTL with operator PJ(ϕ).
I PCTL model checking is performed by a recursive descent over Φ.
I Checking whether s |= P>p(ϕ) amounts to determine Prmin(s |= ϕ).
I Checking whether s |= P<p(ϕ) amounts to determine Prmax(s |= ϕ).
I The next operator amounts to a single matrix-vector multiplication

and a max/min.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications + n minimums (or maximums).
I The until-operator amounts to solving a linear inequation system.
I The worst-case time complexity is polynomial in the size of the MDP

and linear in the size of the formula.

Next lecture: Monday, June 20.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/32

	PCTL Semantics
	PCTL Model Checking
	Complexity
	Example: Dining Cryptographers Problem
	Summary

