Model Checking MDPs

Modeling and Verification of Probabilistic Systems

Lecture 13: Model Checking MDPs

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.informatik.rwth-aachen.de/i2/mvpsi1/

June 6, 2011

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Model Checking MDPs

Probabilistic Computation Tree Logic

|
PCTL is a language for formally specifying properties over DTMCs.
It can also be used to specify properties over MDPs.

>
>
» It is a branching-time temporal logic based on CTL.
» Formula interpretation is Boolean, i.e., a state satisfies a formula or
not.
» The main operator is P;()
» where ¢ constrains the set of paths and J is a threshold on the
probability.
» it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.
> ranges over all possible resolutions of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Model Checking MDPs

Overview

@ PCTL Semantics

© PCTL Model Checking
Complexit

© Complexity

@ Example: Dining Cryptographers Problem

© Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/32

PCTL syntax

[Bianco & De Alfaro, 1995]

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

» PCTL state formulas over the set AP obey the grammar:
® = true) a ‘ b A P, ‘ —® ‘ P,(»)

where a € AP, ¢ is a path formula and J C [0,1], J # @ is a
non-empty interval.

» PCTL path formulae are formed according to the following grammar:
= Od ‘ ®; U b, ‘ &, US" o,

where @, ®;, and ®, are state formulae and n € IN.

Abbreviate Pjg .51(¢) by P<o5(¢) and Pjg 11(0) by P=o().

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/32

http://www-i2.informatik.rwth-aachen.de/i2/mvps11/

Model Checking MDPs

Probabilistic Computation Tree Logic

|
PCTL state formulas over the set AP obey the grammar:

b = true ‘ a ‘ d1 A Dy ‘ e) P,(¢)

where a € AP, ¢ is a path formula and J C [0,1], J # @.

PCTL path formulae are formed according to the following grammar:

= Od ‘ ®; U d, \ ®; US"d, where n € IN.

Intuitive semantics

> sppsia1Han ... = ¢ US" W if ® holds until W holds within n steps
(where s;a; is a single step).

» s = Py(¢p) if probability under all policies that paths starting in s
fulfill ¢ lies in J.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Model Checking MDPs PCTL Semantics

Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, tin, AP, L) where
» S is a countable set of states with initial distribution ¢;,;, : S — [0, 1]
» Act is a finite set of actions
> P:S X Actx S — [0,1], transition probability function such that:

foralls € Sand a € Act: Y P(s,a,s') € {0,1}
s'eS

» AP is a set of atomic propositions and labeling L: S — A

Model Checking MDPs PCTL Semantics

Overview

@ PCTL Semantics

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/32
Model Checking MDPs PCTL Semantics

PCTL semantics (1)

M, s = ® if and only if state-formula ® holds in state s of (possibly
infinite) MDP M. As M is known from the context we simply write

sEo.
Satisfaction relation for state formulas

The satisfaction relation |= is defined for PCTL state formulas by:
skEa iff ae L(s)
sE -0 iff not (s E @)
sEP AV iff (sE=®)and (s =V)
sEPy(p) iff for all policies & on M.Pro(s = ¢) € J

where Pro(s |= @) = Pro{= € Paths(s) | m = ¢ }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Model Checking MDPs PCTL Semantics

Semantics of P-operator

|
The probabilistic operator P(-) imposes probability bounds for all policies.

In particular, we have
s EP<p(p) iff PP"(s = @) < p iff supsPro(s =) <p
and, dually,

sEPs,(p) iff PPM'(s =) > p iff infePrS(s = ¢) > p.

For finite MDPs we have:
P (s |=) = maxgPro(s = ¢) and Pr""(s = ¢) = mingPro(s =).

since for any finite MDP there exists an fm-policy that maximises or
minimises .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/32

Model Checking MDPs PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence

® =\pp WV if and only if for all MDPs M, it holds: Sata((®) = Sata (V).
® =, Vif and only if for all DTMCs D, it holds: Satp(®) = Satp(V).

Since any DTMC is an MDP, it follows: ® =ypp V implies & =, V.

The converse, however, does not hold. For instance, for p < 1, we have
]P)ép(@) =wmc _‘]P>p(60)- But, Pép(@) Fop ﬁ]P)>p(<P)-

sEP(p) iff PrO(s =) < p for all policies &, but

s = -Psp(p) iff not (Pro(s |= ¢) > p for all policies s &)
iff Pro(s = ¢) < p for some policy &.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Model Checking MDPs PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas

Let m = sp g s1 1 S a2 . .. be an infinite path in (possibly infinite) MDP
M. Recall that 7[i] = s; denotes the (i+1)-st state along 7.

The satisfaction relation |= is defined for state formulas by:

T Qo iff s =@
TEOUV iff 3k 0(x[k]EV AVO< i< k.w[i] = ®)

TEOUS"W iff Jk>0.(k<n ATkl E WA
YO < i< k.7[i] = ®)

There is indeed no difference with the PCTL semantics for DTMC paths.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/32

Model Checking MDPs PCTL Model Checking

Overview

© PCTL Model Checking

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/32

Model Checking MDPs PCTL Model Checking Model Checking MDPs PCTL Model Checking

PCTL model checking Core model checking algorithm
PCTL model checking problem —
Propositional formulas
e e e DI S0 = (5 Al) i, AP), siaiie 5 € 5, e Sat(+) is defined by structural induction as for PCTL on DTMCs.

PCTL state formula ¢

Output: yes, if s |= ®; no, otherwise. Probabilistic operator PP

In order to determine whether s € Sat(P<,(¢)), the probability

Basic algorithm Pr"®(s |= ¢) needs to be established. Then

In order to check whether s = ¢ do: aX
1. Compute the satisfaction set Sat(®) ={s€ S|sE= o }. Sat(P<p(¢)) = {s €S| P™ (s = ¢) < p}.

2. This is done recursively by a bottom-up traversal of ®'s parse tree. The same holds for strict upper bounds < p.

» The nodes of the parse tree represent the subformulae of ®.
» For each node, i.e., for each subformula W of ®, determine Sat(V).
» Determine Sat(W) as function of the satisfaction sets of its children:

e.g., Sat(V1 A W) = Sat(W1) N Sat(V,) and Sat(—V) = S\ Sat(V).
3. Check whether state s belongs to Sat(®).

Similarly, lower bounds amount to determining Pr™"(s k= ¢), e.g.,

Sat(P-p(¢)) = {s€S|PM"(s k=) > p}.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/32

Miodsl Checking MOPs PCTL Modsl Checking
The next-step operator Example
Consider MDP:
{heads}

and PCTL-formula:

Py ! (O heads)

|
Recall that: s |=P<,(O @) if and only if Pr"®(s = O ®) < p.

37 trails)

PP (s E O ®) = max{ g: . P(s,a,t) | a € Act(s)}. 1. Sat(heads) = {s»}
t € Sat .
€ Sat(®) 2. x, = Pr""(s1 = O heads) = min(0,0.5) =0
3. Applying that to all states yields:

Algorithm 0 1 0 0 0

0
Determine xs = Pr"®(s ®) and return Sat(V) ={se S |xs <p}. . 0703 0 0 0
S (): O) () { | S p} (Prmln(s ': Oq)))ses — 0 0 0.5 05 2 = 0.5
The case for minimal probabilities is similar and omitted here. g g é (1) 0 %
4. Thus: Sat(P>o5(0O heads)) = {s}.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/32

Model Checking MDPs PCTL Model Checking

Bounded until (1)

|
Recall that: s = P> ,(® US" V) if and only if PF™"(s |z & US" W) > p.

Lemma
Let S_; = Sat(V), S—o = S\ (Sat(P) U Sat(V)), and S; = S\ (S—o U S_1).
Then: PP™"(s = & US" W) equals

1 if s e S
0 if s e S;o
0 if s € S A n=0
min{z P(s,a,s') - Pr""(s' = ®US"1 W) | a € Act(s)} otherwise
s'eS

The case for maximal probabilities is analogous.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Model Checking MDPs PCTL Model Checking
Example
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/32

Model Checking MDPs PCTL Model Checking

Bounded until (2)

Let S—; = Sat(\ll), So=S§ \ (Sat(dD) U Sat(\ll)), and ;=S \ (5:0 @] 5:1).
Then: PP""(s = & US" V) equals

1 if s € S
0 if s e S
0 if s € 5 A n=0
min{z P(s,a,s') - Pr""(s' = dUS" W) |a e Act(s)} otherwise
s’eS

Algorithm

1. Let Py, be the probability matrix of M[S—o U S_1].
2. Then (PP™"(s = ®USOW)) o = by
. <itl _ . <i
3 And (P’;nm(s |: o yYSit w))seS _ P¢~,\U 2 (P/m'n(s): b U I\U))ses.
4. This requires n matrix-vector multiplications in total and n minimum
operators.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/32
Until

|
Recall that: s = P> ,(® U V) if and only if PF""(s = dUWV) > p.

Algorithm

1. Determine S—; = Sat(P—1(® U V)) by a graph analysis.
2. Determine S_g = Sat(P—o(® U V)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

Determining S—o ensures unique solution of linear program.

Determining S—; reduces the number of variables in the linear program.

W N =

Gives exact results for the states in S—; and S—g (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Model Checking MDPs Complexity Model Checking MDPs Complexity

Overview Time complexity

Let |®| be the size of ®, i.e., the number of logical and temporal operators in .

Time complexity of PCTL model checking of MDPs

For finite MDP M and PCTL state-formula ®, the PCTL model-checking
problem can be solved in time

O(poly(size(M)) * Nmax - |®])

© Complexity where nmax = max{n| V; U ST, occurs in ® } with and npmax = 1 if @

does not contain a bounded until-operator.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |®].
2. The worst-case operator is until.

2.1 Determining S—o and S_; can be done in linear time.

2.2 Direct methods to solve linear programs with polynomial complexit
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/32 Joost-Pieter Katoen

Model Checking MDPs Example: Dining Cryptographers Problem Model Checking MDPs Example: Dining Cryptographers Problem

Overview Dining cryptographers problem [Chaum, 1988]

Problem statement

» Three cryptographers gather around a table for dinner.

» The waiter informs them that the meal has been paid by someone,
who could be one of the cryptographers or their master.

» The cryptographers respect each other's right to make an anonymous
payment, but want to find out whether the master paid or not.

@ Example: Dining Cryptographers Problem

Is it possible to obtain this information without revealing the identity of
the cryptographer that paid?

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/32

Model Checking MDPs Example: Dining Cryptographers Problem Model Checking MDPs

Example: Dining Cryptographers Problem

Dining cryptographers problem Dining cryptographers problem

Dining cryptographer’s protocol

non(l xor 0) = 0
1. Each cryptographer flips an unbiased coin and only informs the ';

cryptographer on the right of the outcome. A

2. Each cryptographer states whether the two coins that it can see—the
one it flipped and the one the left-hand neighbour flipped—are the
same (agree) or different (disagree).

B———— 1
. . . . 1
Caveat: if a cryptographer actually paid for the dinner, then it instead ‘Tl S 1] [t O(1

states the opposite (disagree if the coins are the same and agree if the

coins are different). LHOL0 Xorl=9 0 xor0Oxorl=1
An odd number of agrees indicates that the master paid, while an even Example scenario in which master paid (left) or cryptographer A paid
number indicates that a cryptographer paid. (right) and provides a misleading vote.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/32

Dining cryptographers problem MDP generation times
Dining cryptographer’s protocol
Each cryptographer flips an unbiased coin and only informs the cryptographer on N: Model: Construction
the right of the outcome. I States: | Transitions: time (s):
3 286 585 0.001
Each cryptographer states whether the two coins that it can see—the one it 4 | 1,733 4,580 0.01
flipped and the one the left-hand neighbour flipped—are the same (agree) or 5 9,876 32,315 [0.03
different (disagree). 6 | 54,055 211,566 - |0.07
Caveat: if a cryptographer actually paid for the dinner, then it instead states the TS £5/, 100 1,312,043 Lz
ite (disagree if the coins are the same and agree if the coins are different) Ll bty Lbto s it
oppos! & & : 9 | 7,695,856 45,103,311 0.34
— 10| 39,005,611 253,985,650 0.52
Generalisation 15| 115,553,171,626 1,128,594,416,085 3.27
The dining cryptographer’s protocol can be generalised to any number N of 20 304, 257,505 53, 96111 3,903,506, 160, 340, 390 g (540
cryptographer. Then:
» if N is odd, then an odd number of agrees indicates that the master paid
while an even number indicates that a cryptographer paid. The number of states and transitions in the MDP representing the model
» if N is even, then an even number of agrees indicates that the master paid for the dining cryptographers problem with N cryptographers.
while an odd number indicates that a cryptographer paid.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/32 Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/32

Model Checking MDPs Example: Dining Cryptographers Problem

Checking correctness

N: master pays: | | cryptographers pay:
time: iterations: | time: iterations:

3 0.028 7 | |0.008 7

4 0.061 9 0.032 9

5 | 0141 11 0.085 11

6 0.322 13 0.292 13

7 0.778 15 0.563 15

8 | 1.467 17 [225 17

9 267 19 414 19

10 |6.30 21 {763 21

15| |56.9 31 | |18 31

20 268 41 954 41

|
pay = P_; (O(done A par= N%2)) A —pay = P_; (O(done A par # N%2)).
That is: if the master paid, the parity of the number of agrees matches the parity
of N and, if a cryptographer paid, it does not.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/32
Model Checking MDPs Summary

Overview

© Summary

Checking anonymity

N: minimum: maximum:

| time: iterations: probability: time: | iterations: probability:
3 0.099 8 0.25) 0.004 8 0.25 '
4 0.041 10 0.125 0.006 10 0.125
5 | [0.472 12 1 0.0625 [0.032 12 0.0625
6 | 0.231 14 10.03125 [0.044 14 0.03125
7 | |0.595 16 0.015625 | 0.301 16 0.015625
B (1111 18 0.0078125 | [0.540 18 0.0078125
9 ||z12_ 2 (0.00390625 | [1.31 20 0.00390625
10 B8 3.53 22 0.001953125 |2.67 22 0.001953125
15 [45.1 |32 6.103515625E-5 | |36.8 32 6.103515625E-5

|
To verify anonymity—when a cryptographer pays then no cryptographer can tell
which one has paid—we check that any possible combination of agree and
disagree has the same likelihood no matter which of the cryptographers pays.

This needs to be checked for all 2V possible outcomes. Above the results are

listed for one possible outcome.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/32
Model Checking MDPs Summary
Summary

|
PCTL is a variant of CTL with operator P,(¢).

PCTL model checking is performed by a recursive descent over .
Checking whether s |= P ,(») amounts to determine Pr™"(s |= ¢).
Checking whether s |=P_,(¢) amounts to determine Pr"®(s = ¢).

vV Vv Vv Y

The next operator amounts to a single matrix-vector multiplication
and a max/min.

» The bounded-until operator US” amounts to n matrix-vector
multiplications + n minimums (or maximums).

» The until-operator amounts to solving a linear inequation system.

» The worst-case time complexity is polynomial in the size of the MDP
and linear in the size of the formula.

Next lecture: Monday, June 20.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

	PCTL Semantics
	PCTL Model Checking
	Complexity
	Example: Dining Cryptographers Problem
	Summary

