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Transient Analysis of CTMCs Recall: continuous-time Markov chains

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € R+ is:
fy(x) = Xe ™ forx >0 and fy(x) = 0 otherwise
The cumulative distribution of r.v. Y with rate A € Ry is:
d
Fy(d) = / Ae M dx = [—e M4 = 1—e M
0

The rate A € Ry uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate A € R<qg. Then:
» Expectation E[Y] = [(°x-Ae M dx = 1
> Variance Var[Y] = [7°(x — E[X])*Xe > dx = &
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Transient Analysis of CTMCs

Recall: continuous-time Markov chains

Continuous-time Markov chain

Continuous-time Markov chain
A CTMC is a tuple (S, P, r, tini, AP, L) where
> (S,P, Ly, AP, L) is a DTMC, and

» r: S — Ry, the exit-rate function

Let R(s,s’) = P(s,s’) - r(s) be the transition rate of transition (s, s’)

Interpretation

» residence time in state s is exponentially distributed with rate r(s).

» phrased alternatively, the average residence time of state s is r(ls).
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Transient Analysis of CTMCs Recall: continuous-time Markov chains

CTMC semantics

Enabledness

The probability that transition s — s’ is enabled in [0, t] is 1 — e R(s:s")¢,

State-to-state timed transition probability

The probability to move from non-absorbing s to s in [0, t] is:
/
R(S' 5) . (1 _ e—r(s)vt) )
r(s)

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:

t
| royemax — 1 et
0
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Transient Analysis of CTMCs Transient distribution

Transient distribution of a CTMC

Transient state probability

Let X(t) denote the state of a CTMC at time t € R>g. The probability to
be in state s at time t is defined by:

ps(t) = Pr{X(t)=s}
= > Pr{X(0)=s"} Pr{X(t)=s]|X(0)=s"}

s’'eS

The transient probability vector p(t) = (ps,(t),

., Ps,(t)) satisfies:
P'(t) = p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.
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Transient distribution theorem Computing transient probabilities

The transient probability vector p(t) = (ps,(t). ..., ps,(t)) satisfies:

Theorem: transient distribution as linear differential equation p'(t) = p(t) - (R—r) given p(0).

The transient probability vector p(t) = (ps,(t), ..., ps,(t)) satisfies:

/ o . o g
p'(t) = p(t)-(R—r) given p(0) Solution using standard knowledge yields: p(t) = p(0)-e(R=1t.

where r is the diagonal matrix of vector r.

Computing a matrix exponential

riret attempt: use Tayloraclaurin expansion. This yields

On the blackboard. p(t) = p(0)e®R7t = p(0)- i ((R—r)-t)’

But: numerical instability due to fill-in of (R—r)’ in presence of positive
and negative entries in the matrix R—r.
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Overview Uniformization

Let CTMC C = (S, P, r, tinit, AP, L) with S finite.

Uniform CTMC
CTMC C is uniform if r(s) = r for all s € S for some r € Rx.

Uniformization [Gross and Miller, 1984]
© Uniformization ) .
Let r € Ry such that r > maxses r(s). Then unif(r,C) is the tuple

(S,P. 7, tinir, AP, L) with 7(s) = r for all s € S, and:

P(s,s') = @-P(s, s')ifs'#s and P(ss)= r(s)-P(S, s)+1— @

r r

It follows that P is a stochastic matrix and unif(r,C) is a CTMC.
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Transient Analysis of CTMCs Uniformization

Uniformization: example

Let r € Ryg such that r > maxses r(s). Then unifir,C) = (S, P, 7, tinit, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = @P(s,s’) ifs'#s and P(s,s)= rTS)P(s,s) +1-— @

r r

3 1
3 6 6 6
3 ! 6 4 4 L 1
e 1 e ’
1 2
1 4 3
1 1

CTMC C and its uniformized counterpart unif(6,C)

Transient Analysis of CTMCs Uniformization

Uniformization: intuition

Let r € Ryg such that r > maxses r(s). Then unifir,C) = (S, P, 7, tinii, AP, L)
with 7(s) = r for all s € S, and:
P(s,s') = @-P(s, s)ifs'#s and P(s,s)= @-P(s, s)+1— @
r r

r

Intuition

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.
» Thus, % is the shortest mean residence time in the CTMC C.

» Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time © by a shorter (or equal) one,

2. decrease the transition probabilities by a factor @ and
r—r(s)
r

3. increase the self-loop probability by a factor

That is, slow down state s whenever r(s) < r.
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Strong bisimulation on DTMCs

Probabilistic bisimulation
Let D = (S, P, tinit, AP, L) be a DTMC and R C S X S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) =Y, cc P(s, ¢).

[Larsen & Skou, 1989]

|
For states in R, the probability of moving by a single transition to some
equivalence class is equal.

Probabilistic bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistically bisimilar to t,
denoted s ~,, t, if there exists a probabilistic bisimulation R with (s,t) e R.
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Transient Analysis of CTMCs Strong and weak bisimulation

Strong bisimulation on CTMCs

Probabilistic bisimulation [Buchholz, 1994]

Let C = (S, P, r, tinit, AP, L) be a CTMC and R C S X S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. r(s) = r(t), and
3. P(s, C) = P(t, C) for all equivalence classes C € S/R

The last two conditions amount to R(s, C) = R(t, C) for all equivalence classes
CeS/R.

Probabilistic bisimilarity

Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,
denoted s ~, t, if there exists a probabilistic bisimulation R with (s, t) € R.
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Weak bisimulation on DTMCs
[Baier & Hermanns, 1996]

Weak probabilistic bisimulation

Let D = (S, P, tinit, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

L(s) = L(t), and
if P(s, [s]r) <1 and P(t,[t]rg) < 1, then:

P(sC) _  P(t0)

PG lp) - T=Pit[a) O 2NCES/RCAIr= s

s can reach a state outside [s]g iff t can reach a state outside [t]g.

Probabilistic weak bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistically weak bisimilar
to t, denoted s ~,, t, if there exists a probabilistic weak bisimulation R with
(s, t) € R.

Transient Analysis of CTMCs Strong and weak bisimulation

Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]
Let D = (S, P, tinit, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

2. if P(s,[s]r) < 1 and P(t,[t]r) < 1, then:

P(s,C) _ P(tC)

1= P(s.[sla) _ 1-P(t[dr) allC € S/R, C # [s]r = [t]-

3. s can reach a state outside [s]g iff ¢t can reach a state outside [t]g.

|
For states in R, the conditional probability of moving by a single transition to
another equivalence class is equal. In addition, either all states in an equivalence
class C almost surely stay there, or have an option to escape from C.
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Weak bisimulation on DTMC: example

5 1
8 4
)& )
1 1 1
3

8 4

The equivalence relation R with S/R = { {s1, s, 53,5}, {u1, o, us} } is a
weak bisimulation. This can be seen as follows. For C = { u1, up, u3 } and s1, 55, 4
with P(s;, [si]r) < 1 we have:

P(s1, C) 1/8 1/4 P(ss, C) 1/3 P(ss, C)

1—-P(s,[s1]) 1-5/8 1-1/4 1—P(s[s]) 1 1—P(ss[s4])

Note that P(s3, [s3]r) = 1. Since s3 can reach a state outside [s3] as s, s, and s,
it follows that s =, s, ~p 53 =) Sa.
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Transient Analysis of CTMCs Strong and weak bisimulation

Reachability condition

Consider the following DTMC:
OO O}

It is not difficult to establish s; & s,. Note: P(sy, [s1]) = 1, but P(sy, [s2]r) < 1.
Both s; and s; can reach a state outside [s1]g = [s2]g. The reachability condition
is essential to establish s; &~ s, and cannot be dropped: otherwise s; and s, would
be weakly bisimilar to an equally labelled absorbing state.
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A useful lemma

|
Let C be a CTMC and R an equivalence relation on S with (s, t) € R. Then: the
following two statements are equivalent:

1. If P(s,[s]r) < 1 and P(t,[t]r) < 1 then for all C € S/R, C # [s]r = [t]&:

P(s,C)  P(t,C)
1-P(s,[s]g) 1—P(t [tlr)

and R(s, S\ [s]gr) = R(t, S\ [t]r)

2. R(s,C) =R(t, C) for all C € S/R with C # [s]g = [t]r-

Left as an exercise.
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Weak bisimulation on CTMCs

Weak probabilistic bisimulation

[Bravetti, 2002]
Let C = (S, P, r, tinit, AP, L) be a CTMC and R C S X S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

2. R(s,C) =R(t, C) for all C € S/R with C # [s]g = [t]r

Weak probabilistic bisimilarity

Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,
denoted s =, t, if there exists a probabilistic bisimulation R with (s, t) € R.
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Weak bisimulation on CTMCs: example

ro

Equivalence relation R with S/R = { {s1, 5, 53, 54, 55, 56}, {u1, U2, u3, us, us} } is
a weak bisimulation on the CTMC depicted above. This can be seen as follows.
For C = { w1, u, u3, ug, us }, we have that all s-states enter C with rate 2. The
rates between the s-states are not relevant.
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Transient Analysis of CTMCs Strong and weak bisimulation Transient Analysis of CTMCs Computing transient probabilities

Properties (without proof) Overview

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs C and states s, u in C, we have:
s~mu iff sxpu iff s~pu.
]

For any CTMC C, we have: C ~p, unifir,C) with r > maxses r(s).

Preservation of transient probabilities

For all CTMCs C with states s, u in C and t € Rxq, we have: © Computing transient probabilities

s ~mu implies p(t) = p(t)

where p(0) = 15 and p(0) = 1, where 15 is the characteristic function for
state s, i.e., 15(s') =1 iff s=¢.
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Computing transient probabilities Computing transient probabilities

The transient probability vector p(t) = (ps,(t). ... ps,(t)) satisfies: C

p'(t) = p(t)- (R—r) given p(0). p(t) = p(0):e® Dt = p(0)-e®r=tt = p(0)- Pt = p(0)-emer P,

Standard knowledge yields: p(t) = B(O)-e(R*')'t. Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:
|
As uniformization preserves transient probabilities, we replace R—r by its 5 = (rt) — 00 (rt) —
variant for the uniformized CTMC, i.e., R—F. We have: B(O)'e_rt'er't' = B(O)'e_rt : Z 1 P = p(0)- Z e_r.t-—, -P
i—0 I G
R(s,s') = P(s,s')F(s) =P(s,s')-r and ¥=Ir. Poisson prob.
Thus: As P is a stochastic matrix, computing the matrix exponential ﬁi is

R—¥ P P - numerically stable.
E(O)'G(R_r)'t — B(O).e(P-r—|~r)~t = p(O).e(P—l)-r.t _ p(o)_e—rt‘er.t.P'
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Intermezzo: Poisson distribution Transient probabilities: example
Poisson distribution
3

The Poisson distribution is a discrete probability distribution Tchat expresses @ 9 _|01 = 3 and P3 = (2) }
the probability of a given number i of events occurring in a fixed interval 10 2 3 3
of time [0, t] if these events occur with a known average rate r and 2

independently of the time since the last event. Formally, the pdf is: Let initial distribution p(0) = (1,0), and time bound t=1.

. Then:
r-t)! ,
f(iirt) = et = 3
il p(1) = p(0) D _e*=-P
i=0
where r is the mean of the Poisson distribution. 0 1 0 1
- woed [} b raoez 9]
3 3

LT

The Poisson distribution can be derived as a limiting case to the binomial + (1:0)'673%' { 2 1 ] o

N . . 3 3

distribution as the number of trials goes to infinity and the expected number of

successes remains fixed. ~ (0.404043,0.595957)
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Truncating the infinite sum Overview

Computing transient probabilities

» Summation can be truncated a priori for a given error bound € > 0.

» The error that is introduced by truncating at summand k. is:

= () ke rt)
Z eirt ! B(i) - Z - B ) H ' 7rt ) H
i=0 ' i=0
» Strategy: choose k. minimal such that:
o) kg i ks
_,t(rt rt) ) () Q Summary
3 el - Sy el gy neel) <
i=key1 i=0 i=0
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Transient Analysis of CTMCs Summary
Summary

» Bisimilar states are equally labelled and their cumulative rate to any
equivalence class coincides.

» Weak bisimilar states have equal conditional probabilities to move to
some equivalence class, and can either both leave their class or both
can't.

» Uniformization normalizes the exit rates of all states in a CTMC.
» Uniformization transforms a CTMC into a weak bisimilar one.

» Transient distribution are obtained by solving a system of linear
differential equations.

» These equations can be solved conveniently on the uniformized
CTMC.
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