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Transient Analysis of CTMCs Recall: continuous-time Markov chains

Negative exponential distribution
Density of exponential distribution
The density of an exponentially distributed r.v. Y with rate λ ∈ R>0 is:

fY (x) = λ·e−λ·x for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of r.v. Y with rate λ ∈ R>0 is:

FY (d) =

∫ d

0
λ·e−λ·x dx = [−e−λ·x ]d0 = 1− e−λ·d .

The rate λ ∈ R>0 uniquely determines an exponential distribution.

Variance and expectation
Let r.v. Y be exponentially distributed with rate λ ∈ R>0. Then:

I Expectation E [Y ] =
∫∞
0 x ·λ·e−λ·x dx = 1

λ

I Variance Var[Y ] =
∫∞
0 (x − E [X ])2λ·e−λ·x dx = 1

λ2
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Transient Analysis of CTMCs Recall: continuous-time Markov chains

Continuous-time Markov chain

Continuous-time Markov chain
A CTMC is a tuple (S,P, r , ιinit,AP, L) where

I (S,P, ιinit,AP, L) is a DTMC, and
I r : S → R>0, the exit-rate function

Let R(s, s ′) = P(s, s ′) · r(s) be the transition rate of transition (s, s ′)

Interpretation

I residence time in state s is exponentially distributed with rate r(s).
I phrased alternatively, the average residence time of state s is 1

r(s) .
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Transient Analysis of CTMCs Recall: continuous-time Markov chains

CTMC semantics
Enabledness
The probability that transition s → s ′ is enabled in [0, t] is 1− e−R(s,s′)·t .

State-to-state timed transition probability
The probability to move from non-absorbing s to s ′ in [0, t] is:

R(s, s ′)
r(s) ·

(
1− e−r(s)·t

)
.

Residence time distribution
The probability to take some outgoing transition from s in [0, t] is:∫ t

0
r(s)·e−r(s)·x dx = 1− e−r(s)·t
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Transient Analysis of CTMCs Transient distribution

Transient distribution of a CTMC

Transient state probability
Let X (t) denote the state of a CTMC at time t ∈ R>0. The probability to
be in state s at time t is defined by:

ps(t) = Pr{X (t) = s }

=
∑
s′∈S

Pr{X (0) = s ′ } · Pr{X (t) = s | X (0) = s ′ }

Theorem: transient distribution as linear differential equation
The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R− r) given p(0)

where r is the diagonal matrix of vector r .
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Transient Analysis of CTMCs Transient distribution

Transient distribution theorem

Theorem: transient distribution as linear differential equation
The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R− r) given p(0)

where r is the diagonal matrix of vector r .

Proof:
On the blackboard.
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Transient Analysis of CTMCs Transient distribution

Computing transient probabilities

The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R−r) given p(0).

Solution using standard knowledge yields: p(t) = p(0)·e(R−r)·t .

Computing a matrix exponential
First attempt: use Taylor-Maclaurin expansion. This yields

p(t) = p(0)·e(R−r)·t = p(0) ·
∞∑

i=0

((R−r)·t)i

i!

But: numerical instability due to fill-in of (R−r)i in presence of positive
and negative entries in the matrix R−r.
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Transient Analysis of CTMCs Uniformization

Uniformization
Let CTMC C = (S,P, r , ιinit,AP, L) with S finite.

Uniform CTMC
CTMC C is uniform if r(s) = r for all s ∈ S for some r ∈ R>0.

Uniformization [Gross and Miller, 1984]

Let r ∈ R>0 such that r > maxs∈S r(s). Then unif(r , C) is the tuple
(S,P, r , ιinit,AP, L) with r(s) = r for all s ∈ S, and:

P(s, s ′) =
r(s)

r ·P(s, s ′) if s ′ 6= s and P(s, s) =
r(s)

r ·P(s, s) + 1− r(s)
r .

It follows that P is a stochastic matrix and unif(r , C) is a CTMC.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/33



Transient Analysis of CTMCs Uniformization

Uniformization: example

Uniformization
Let r ∈ R>0 such that r > maxs∈S r(s). Then unif(r , C) = (S,P, r , ιinit,AP, L)
with r(s) = r for all s ∈ S, and:

P(s, s ′) =
r(s)

r ·P(s, s ′) if s ′ 6= s and P(s, s) =
r(s)

r ·P(s, s) + 1− r(s)
r .

CTMC C and its uniformized counterpart unif(6, C)
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Transient Analysis of CTMCs Uniformization

Uniformization: intuition
Uniformization
Let r ∈ R>0 such that r > maxs∈S r(s). Then unif(r , C) = (S,P, r , ιinit,AP, L)
with r(s) = r for all s ∈ S, and:

P(s, s ′) =
r(s)

r ·P(s, s ′) if s ′ 6= s and P(s, s) =
r(s)

r ·P(s, s) + 1− r(s)
r .

Intuition

I Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.
I Thus, 1

r is the shortest mean residence time in the CTMC C.
I Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time 1
r(s) by a shorter (or equal) one, 1

r

2. decrease the transition probabilities by a factor r(s)
r , and

3. increase the self-loop probability by a factor r−r(s)
r

That is, slow down state s whenever r(s) < r .
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Transient Analysis of CTMCs Strong and weak bisimulation

Strong bisimulation on DTMCs
Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S,P, ιinit,AP, L) be a DTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. P(s,C) = P(t,C) for all equivalence classes C ∈ S/R

where P(s,C) =
∑

s′∈C P(s, s ′).

For states in R, the probability of moving by a single transition to some
equivalence class is equal.

Probabilistic bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistically bisimilar to t,
denoted s ∼p t, if there exists a probabilistic bisimulation R with (s, t) ∈ R.
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Strong bisimulation on CTMCs
Probabilistic bisimulation [Buchholz, 1994]

Let C = (S,P, r , ιinit,AP, L) be a CTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. r(s) = r(t), and
3. P(s,C) = P(t,C) for all equivalence classes C ∈ S/R

The last two conditions amount to R(s,C) = R(t,C) for all equivalence classes
C ∈ S/R.

Probabilistic bisimilarity
Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,
denoted s ∼m t, if there exists a probabilistic bisimulation R with (s, t) ∈ R.
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Transient Analysis of CTMCs Strong and weak bisimulation

Weak bisimulation on DTMCs
Weak probabilistic bisimulation [Baier & Hermanns, 1996]

Let D = (S,P, ιinit,AP, L) be a DTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. if P(s, [s]R) < 1 and P(t, [t]R) < 1, then:

P(s,C)

1− P(s, [s]R)
=

P(t,C)

1− P(t, [t]R)
for allC ∈ S/R,C 6= [s]R = [t]R .

3. s can reach a state outside [s]R iff t can reach a state outside [t]R .

For states in R, the conditional probability of moving by a single transition to
another equivalence class is equal. In addition, either all states in an equivalence
class C almost surely stay there, or have an option to escape from C .
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Transient Analysis of CTMCs Strong and weak bisimulation

Weak bisimulation on DTMCs
Weak probabilistic bisimulation [Baier & Hermanns, 1996]

Let D = (S,P, ιinit,AP, L) be a DTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. if P(s, [s]R) < 1 and P(t, [t]R) < 1, then:

P(s,C)

1− P(s, [s]R)
=

P(t,C)

1− P(t, [t]R)
for allC ∈ S/R,C 6= [s]R = [t]R .

3. s can reach a state outside [s]R iff t can reach a state outside [t]R .

Probabilistic weak bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistically weak bisimilar
to t, denoted s ≈p t, if there exists a probabilistic weak bisimulation R with
(s, t) ∈ R.
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Transient Analysis of CTMCs Strong and weak bisimulation

Weak bisimulation on DTMC: example

The equivalence relation R with S/R =
{
{s1, s2, s3, s4}, {u1, u2, u3}

}
is a

weak bisimulation. This can be seen as follows. For C = { u1, u2, u3 } and s1, s2, s4
with P(si , [si ]R) < 1 we have:

P(s1,C)

1− P(s1, [s1])
=

1/8
1−5/8 =

1/4
1−1/4 =

P(s2,C)

1− P(s2, [s2])
=

1/3
1 =

P(s4,C)

1− P(s4, [s4])
.

Note that P(s3, [s3]R) = 1. Since s3 can reach a state outside [s3] as s1, s2 and s4,
it follows that s1 ≈p s2 ≈p s3 ≈p s4.
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Transient Analysis of CTMCs Strong and weak bisimulation

Reachability condition

Remark
Consider the following DTMC:

It is not difficult to establish s1 ≈ s2. Note: P(s1, [s1]) = 1, but P(s2, [s2]R) < 1.
Both s1 and s2 can reach a state outside [s1]R = [s2]R . The reachability condition
is essential to establish s1 ≈ s2 and cannot be dropped: otherwise s1 and s2 would
be weakly bisimilar to an equally labelled absorbing state.
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Weak bisimulation on CTMCs

Weak probabilistic bisimulation [Bravetti, 2002]

Let C = (S,P, r , ιinit,AP, L) be a CTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. R(s,C) = R(t,C) for all C ∈ S/R with C 6= [s]R = [t]R

Weak probabilistic bisimilarity
Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,
denoted s ≈m t, if there exists a probabilistic bisimulation R with (s, t) ∈ R.
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Transient Analysis of CTMCs Strong and weak bisimulation

A useful lemma

Let C be a CTMC and R an equivalence relation on S with (s, t) ∈ R. Then: the
following two statements are equivalent:

1. If P(s, [s]R) < 1 and P(t, [t]R) < 1 then for all C ∈ S/R, C 6= [s]R = [t]R :

P(s,C)

1− P(s, [s]R)
=

P(t,C)

1− P(t, [t]R)
and R(s, S \ [s]R) = R(t, S \ [t]R)

2. R(s,C) = R(t,C) for all C ∈ S/R with C 6= [s]R = [t]R .

Proof:
Left as an exercise.
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Transient Analysis of CTMCs Strong and weak bisimulation

Weak bisimulation on CTMCs: example

Equivalence relation R with S/R =
{
{s1, s2, s3, s4, s5, s6}, {u1, u2, u3, u4, u5}

}
is

a weak bisimulation on the CTMC depicted above. This can be seen as follows.
For C = { u1, u2, u3, u4, u5 }, we have that all s-states enter C with rate 2. The
rates between the s-states are not relevant.
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Transient Analysis of CTMCs Strong and weak bisimulation

Properties (without proof)
Strong and weak bisimulation in uniform CTMCs
For all uniform CTMCs C and states s, u in C, we have:

s ∼m u iff s ≈m u iff s ∼p u.

For any CTMC C, we have: C ≈m unif(r , C) with r > maxs∈S r(s).

Preservation of transient probabilities
For all CTMCs C with states s, u in C and t ∈ R>0, we have:

s ≈m u implies p(t) = p(t)

where p(0) = 1s and p(0) = 1u where 1s is the characteristic function for
state s, i.e., 1s(s ′) = 1 iff s = s ′.
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Transient Analysis of CTMCs Computing transient probabilities

Computing transient probabilities

The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R−r) given p(0).

Standard knowledge yields: p(t) = p(0)·e(R−r)·t .

As uniformization preserves transient probabilities, we replace R−r by its
variant for the uniformized CTMC, i.e., R−r. We have:

R(s, s ′) = P(s, s ′)·r(s) = P(s, s ′)·r and r = I·r .

Thus:

p(0)·e(R−r)·t = p(0)·e(P·r−I·r)·t = p(0)·e(P−I)·r ·t = p(0)·e−rt ·er ·t·P.
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Transient Analysis of CTMCs Computing transient probabilities

Computing transient probabilities

p(t) = p(0)·e(R−r)·t = p(0)·e(P·r−I·r)·t = p(0)·e(P−I)·r ·t = p(0)·e−rt ·er ·t·P.

Computing a matrix exponential
Exploit Taylor-Maclaurin expansion. This yields:

p(0)·e−rt ·er ·t·P = p(0)·e−rt ·
∞∑

i=0

(r ·t)i

i! ·P
i

= p(0) ·
∞∑

i=0
e−r ·t (r ·t)i

i!︸ ︷︷ ︸
Poisson prob.

·Pi

As P is a stochastic matrix, computing the matrix exponential Pi is
numerically stable.
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Intermezzo: Poisson distribution

Poisson distribution
The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number i of events occurring in a fixed interval
of time [0, t] if these events occur with a known average rate r and
independently of the time since the last event. Formally, the pdf is:

f (i ; r ·t) = e−r ·t (r ·t)i

i!

where r is the mean of the Poisson distribution.

Remark
The Poisson distribution can be derived as a limiting case to the binomial
distribution as the number of trials goes to infinity and the expected number of
successes remains fixed.
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Transient probabilities: example

P =

[
0 1
1 0

]
, r =

[
3
2

]
and P3 =

[
0 1
2
3

1
3

]

Let initial distribution p(0) = (1, 0), and time bound t=1.
Then:

p(1) = p(0)·
∞∑

i=0
e−3 3

i

i! ·P
i

= (1, 0)·e−3 1
0! ·
[

0 1
1 0

]
+ (1, 0)·e−3 3

1! ·
[

0 1
2
3

1
3

]

+ (1, 0)·e−3 9
2! ·
[

0 1
2
3

1
3

]2
+ . . . . . .

≈ (0.404043, 0.595957)
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Truncating the infinite sum

Computing transient probabilities

p(t) = p(0) ·
∞∑

i=0
e−r ·t (r ·t)i

i! ·P
i

I Summation can be truncated a priori for a given error bound ε > 0.
I The error that is introduced by truncating at summand kε is:∥∥∥∥∥

∞∑
i=0

e−rt (rt)i

i! ·p(i)−
kε∑

i=0
e−rt (rt)i

i! ·p(i)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

i=kε+1
e−rt (rt)i

i! ·p(i)

∥∥∥∥∥
I Strategy: choose kε minimal such that:

∞∑
i=kε+1

e−rt (rt)i

i! =
∞∑

i=0
e−rt (rt)i

i! −
kε∑

i=0
e−rt (rt)i

i! = 1−
kε∑

i=0
e−rt (rt)i

i! 6 ε
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Summary

Main points

I Bisimilar states are equally labelled and their cumulative rate to any
equivalence class coincides.

I Weak bisimilar states have equal conditional probabilities to move to
some equivalence class, and can either both leave their class or both
can’t.

I Uniformization normalizes the exit rates of all states in a CTMC.
I Uniformization transforms a CTMC into a weak bisimilar one.
I Transient distribution are obtained by solving a system of linear

differential equations.
I These equations can be solved conveniently on the uniformized

CTMC.
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