Continuous Stochastic Logic Continuous Stochastic Logic

Overview

Modeling and Verification of Probabilistic Systems

@ CSL Syntax

Lecture 17: Continuous Stochastic Logic

@ CSL Semantics

Joost-Pieter Katoen

© CSL Model Checking

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

o . . @ Complexity
http://www-i2.informatik.rwth-aachen.de/i2/mvpsi1/
July 4, 2011 © Summary
Joost. Pieter Katoen Modeling and Verification of Probabilistic Systems
Overview Continuous Stochastic Logic

|
@ CSL Syntax

v

CSL is a language for formally specifying properties over CTMCs.

v

It is a branching-time temporal logic based on CTL.

v

Formula interpretation is Boolean, i.e., a state satisfies a formula or
not.
Like in PCTL, the main operator is P,(y)

» where ¢ constrains the set of paths and J is a threshold on the
probability.
> it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.

\4

» The new features are a timed version of the next and until-operator.

» O/ ® asserts that a transition to a ®-state can be made at time t € /.
» & U/W asserts that a W-state can be reached via ®-states at time t € /.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

http://www-i2.informatik.rwth-aachen.de/i2/mvps11/

CTMCs — A transition system perspective CSL syntax [Baier, Katoen & Hermanns, 1999]

Continuous-time Markov chain Continuous Stochastic Logic: Syntax

A CTMC C is a tuple (S, P, r, tin, AP, L) with: CSL consists of state- and path-formulas.
» S is a countable nonempty set of states » CSL state formulas over the set AP obey the grammar:
» P:S5xS —[0,1], transition probability function s.t. > P(s,s’) =1
> r: SS—>SR>0[,O;at]<;. assigning :mction ' wePles) b = true) . ‘ b1 A 2 ‘ o ‘ P,(%)
> L 0 S — [0,1], the initial distribution with 5%35 tine(5) =1 where a € AP, ¢ is a path formula and J C [0,1], J # @ is a
» AP is a set of atomic propositions. T3 el

> LS 2AP the el fumedten, assaning o st 6, dhe s 1) » CSL path formulae are formed according to the following grammar:

of atomic propositions that are valid in s.

¢ o= O o) o, U’ o,

where ®, 3, and ®, are state formulae and | C Rso an interval.

The average residence time in state s is ﬁ

Abbreviate Pjg .51(¢) by P<o.5(¢) and Pjg 11(0) by P=o(e).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/30

Continuous Stochastic Logic Overview

CSL state formulas over the set AP obey the grammar:

® = true ‘ a ‘ O A Dy ‘ - ’ P,(v)

CSL S ti
where a € AP, ¢ is a path formula and J C [0,1], J # &. (2] emantics

CSL path formulae are formed according to the following grammar:
o = 0Olo \ o1 U’ &,
where ®, ®1, and ®; are state formulae and / C R>¢ an interval.

Intuitive semantics

> sotosity... = & UV if U is reached at t € | and prior to t, ® holds.
» s = Py(¢) if probability that paths starting in s fulfill ¢ lies in J.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Derived operators Paths in a CTMC

Timed paths

Ob = trueU & Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:
T Soi)lesz...

Old = trueU'o such that s; € S and t; € Ry. Let Paths(C) be the set of paths in C and
Paths*(C) the set of finite prefixes thereof.

Pep(09) = Po1-5(079)

» Let 7[i] := s; denote the (i+1)-st state along the timed path 7.
» Let 7(i) := t; the time spent in state s;.

P(p,q)(DI(D) = IP>[1—q,1_p](<>’—.<l>) > Let m@t be the state occupied in 7 at time t € R>o, i.e. 70t := 7]
where / is the smallest index such that 37; o 7(j) > t.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Example properties CSL semantics (1)
-
> Transient probabilities to be in goal state at time point 4: C,s = ¢ if and only if state-formula ¢ holds in state s of CTMC C.

P>0.92 (024 goal) Satisfaction relation for state formulas

The satisfaction relation |= is defined for CSL state formulas by:

» With probability > 0.92, a goal state is reached legally: si=4 i eIEHE)
sE -9 iff not (s =)
P>o0.02 (—illegal U goal) sEO AV iff (sE=®)and (sl V)
sEP)(p) iff Pisky)e)
» ... in maximally 137 time units: P> 0.02 (- illegal US'37 goal) where Pr(s = @) = Pr.{m € Paths(s) | 7 = ¢ }.

> ... once there, remain there almost surely for the next 31 time units:

|
P> 0.2 (ﬂ illegal U ST p_y (034 goal)) This is as for PCTL, except that Pr is the probability measures on cylinder
sets of timed paths in CTMC C.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic CSL Semantics

CSL semantics (2) Measurability

Satisfaction relation for path formulas

Let m = sptpsi t1 S» ... be an infinite path in CTMC C.

The satisfaction relation |= is defined for state formulas by:

CSL measurability
I iff s dAtye | For any CSL path formula ¢ and state s of CTMC C,
mEO I L= k the set { m € Paths(s) | m = ¢ } is measurable.
oV v iff Jtel (V' €]0,t).00t | D) A 00t = V)

Rather straightforward; left as an exercise.
Standard next- and until-operators

> XO = O d with | =R
» UV = dU W with | = Rso.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 14/30
Continuous Stochastic Logic CSL Model Checking Continuous Stochastic Logic CSL Model Checking
Overview

CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S, P, r, L, AP, L), state s € S, and
CSL state formula

Output: yes, if s = ®; no, otherwise.

Basic algorithm
© CSL Model Checking

In order to check whether s = ® do:
1. Compute the satisfaction set Sat(®) ={s€ S|sE o }.

2. This is done recursively by a bottom-up traversal of ®'s parse tree.
» The nodes of the parse tree represent the subformulae of ®.
» For each node, i.e., for each subformula W of ®, determine Sat(V).
» Determine Sat(W) as function of the satisfaction sets of its children:
e.g., Sat(V1 A W,) = Sat(W1) N Sat(V2) and Sat(—W) = S\ Sat(V).
3. Check whether state s belongs to Sat(®).
Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic CSL Model Checking Continuous Stochastic Logic CSL Model Checking

Core model checking algorithm The next-step operator
Propositional formulas [
Sat(-) is defined by structural induction as follows: Recall that: s =P, (O'®) if and only if Pr(s = O'®) € J.
Satrue) = S
Sat(a) = {S €S | aec L(S) }v for any a € AP / _ —r(s)-inf —r(s)-sup/ /
Sat(® A W) — Sat(®) N Sar(V) Pis=O'®) = (e G) - , sch &)
Sat(—~®) = S\ Sat(®). s'€Sat(®)

probability to leave s in interval /

Algorithm
Probabilistic operator P

Considering the above equation for all states simultaneously yields:

In order to determine whether s € Sat(IP,(y)), the probability Pr(s = ¢)
for the event specified by ¢ needs to be established. Then (Pr(s = O ¢))SES = b/T .P

Sat(Ps(¢)) = {s€ S| Prisk o) € J}.

with by is defined by bj(s) = e "()inf/ _ e=r(s)-sup/ if 5 ¢ Sat(d) and 0

. T . .
. . . otherwise, and b, is the transposed variant of b,.
Let us consider the computation of Pr(s |=) for all possible . ! P
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/30

Time-bounded until (1) Time-bounded until (2)

1 Let S_1 = Sat(W), S_o = S \ (Sat(®) U Sat(W)), and S» = S \ (S—o U S_1). Then:

Recall that: s = P,(® USE W) if and only if Pr(s = d USEW) € J.

1 if s €S
(‘) 0 if se S
Pr(s = dUS" V) = "t
[SR U) e
Let S_; = Sat(\IJ), So=S5 \ (Sat(d)) U Sat(\ll)), and =S \ (5:0 U 5:1). Then: Jo Jes
1 if s € 5
Prs = dUS' V) = 0/'t Z " . if s € 5= Recall lemma from the previous lecture
R(s,s') - e " .Pr(s’ = dUS"™ W) dx otherwise = _)
o S Pr(s =FUS'G) = Pr(s=07'G) = p(t) with p(0) =1,
timed reachability in C in C[F U G] transient prob. in C[F U G]

| Phrased using CSL state formulas

This is a ingh’F generalisation of the Volterra integral equation system for Pris | dUStW) = Pr(s = O~ W) = p(t) with p(0) = 1,.
timed reachability. —_— NN S —

timed reachability in C in C[Sat(—®) U Sat(WV)] C[Sat(—=®) U Sat(V)]

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Time-bounded until (3) Time-bounded until (4)

Algorithm for checking Pr(s = U) € J Possible optimizations

Make all states in S\ Sat(3(® U V)) absorbing.
Make all states in Sat(V(P U V)) absorbing.
Replace the labels of all states in S\ Sat(3(PV)) by unique label zero.

1. If t = oo, then use approach for until (as in PCTL): solve a system of linear
equations.

Determine recursively Sat(®) and Sat(V).

il ell szt 0 51 Sa()) emel o) zlbseribing. Replace the labels of all states in Sat(V(® U W)) by unique label one.

Uniformize the resulting CTMC with respect to its maximal rate.

o1 R D

Perform bisimulation minimization on all states.

Determine the transient probability at time t using s as initial distribution.
P Y g The last step collapses all states in S\ Sat(3(¢ U V)) into a single state, and

Return yes if transient probability of all W-states lies in J, and no otherwise. does the same with all states in Sat(V(® U V).

o o kB WD

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Preservation of CSL-formulas Preservation of CSL-formulas

Weak bisimulation and CSL-without-next-equivalence coincide

Bisimulation and CSL-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:
Let C be a finitely branching CTMC and s, t states in C. Then:

s~y t ifand only if s and t are CSL-without-next-equivalent.
s~mt ifand only if s and t are CSL-equivalent.

Here. CSL-without-next is the fragment of CSL where the next-operator
(O does not occur.

If for CSL-formula ® we have s |= ® but t = ®, then it follows s %p, t. A Remarks

single CSL-formula suffices! If for CSL-without-next-formula ® we have s |= ® but t [~ ®, then it
follows s %, t.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic CSL Model Checking

Uniformization and CSL Overview
Uniformization and CSL
For any finite CTMC C with state space S, r > max{r(s) |s€ S} and ®
a CSL-without-next-formula:
Sat’(®) = Sat’ (®) where C' = unif(r,C).
Uniformization and CSL Q@ Complexity

For any uniformized CTMC: CSL-equivalence coincides with
CSL-without-next-equivalence.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 26/30
Continuous Stochastic Logic Complexity Continuous Stochastic Logic Complexity

Time complexity Some practical verification times

verification time (in ms)

Let |®| be the size of @, i.e., the number of logical and temporal operators in . o === S8 =2

Time complexity of CSL model checking d T

For finite CTMC C and CSL state-formula ®, the CSL model-checking
problem can be solved in time

utex (DTMC)

T T {]
e

O(poly(size(C)) * tmax - |¢|)

tate space|siz

where tmax = max{t|V; U Sy, occurs in ® } with and tmax = 1if ®
does not contain a time-bounded until-operator.

510°
1108
15108
2108
25108

» command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.
» CSL formulas are time-bounded until-formulas.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic Summary Continuous Stochastic Logic Summary

Overview Summary

|
CSL is a variant of PCTL with timed next and timed until.
Sets of paths fulfilling CSL path-formula ¢ are measurable.

CSL model checking is performed by a recursive descent over ®.

vV Vv v Y

The timed next operator amounts to a single vector-matrix
multiplication.

The time-bounded until-operator US! is solved by uniformization.

v

» The worst-case time complexity is polynomial in the size of the
© Summary CTMC and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/30 Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

	CSL Syntax
	CSL Semantics
	CSL Model Checking
	Complexity
	Summary

