

Modeling and Verification of Probabilistic Systems

Lecture 17: Continuous Stochastic Logic

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://www-i2.informatik.rwth-aachen.de/i2/mvps11/>

July 4, 2011

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Continuous Stochastic Logic

- ▶ CSL is a language for formally specifying properties over CTMCs.
- ▶ It is a branching-time temporal logic based on CTL.
- ▶ Formula interpretation is Boolean, i.e., a state satisfies a formula or not.
- ▶ Like in PCTL, the main operator is $\mathbb{P}_J(\varphi)$
 - ▶ where φ constrains the set of paths and J is a threshold on the probability.
 - ▶ it is the probabilistic counterpart of \exists and \forall path-quantifiers in CTL.
- ▶ The new features are a **timed** version of the next and until-operator.
 - ▶ $\bigcirc^I \Phi$ asserts that a transition to a Φ -state can be made at time $t \in I$.
 - ▶ $\Phi U^I \Psi$ asserts that a Ψ -state can be reached via Φ -states at time $t \in I$.

CTMCs — A transition system perspective

Continuous-time Markov chain

A CTMC \mathcal{C} is a tuple $(S, \mathbf{P}, r, \iota_{\text{init}}, AP, L)$ with:

- ▶ S is a countable nonempty set of **states**
- ▶ $\mathbf{P} : S \times S \rightarrow [0, 1]$, **transition probability function** s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $r : S \rightarrow \mathbb{R}_{>0}$, **rate** assigning function
- ▶ $\iota_{\text{init}} : S \rightarrow [0, 1]$, the **initial distribution** with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
- ▶ AP is a set of **atomic propositions**.
- ▶ $L : S \rightarrow 2^{AP}$, the **labeling function**, assigning to state s , the set $L(s)$ of atomic propositions that are valid in s .

Residence time

The average residence time in state s is $\frac{1}{r(s)}$.

Continuous Stochastic Logic

- ▶ CSL **state formulas** over the set AP obey the grammar:

$$\Phi ::= \text{true} \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_J(\varphi)$$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$.

- ▶ CSL **path formulae** are formed according to the following grammar:

$$\varphi ::= \bigcirc^I \Phi \mid \Phi_1 U^I \Phi_2$$

where Φ , Φ_1 , and Φ_2 are state formulae and $I \subseteq \mathbb{R}_{\geq 0}$ an interval.

Intuitive semantics

- ▶ $s_0 t_0 s_1 t_1 \dots \models \Phi U^I \Psi$ if Ψ is reached at $t \in I$ and prior to t , Φ holds.
- ▶ $s \models \mathbb{P}_J(\varphi)$ if probability that paths starting in s fulfill φ lies in J .

CSL syntax

[Baier, Katoen & Hermanns, 1999]

Continuous Stochastic Logic: Syntax

CSL consists of state- and path-formulas.

- ▶ CSL **state formulas** over the set AP obey the grammar:

$$\Phi ::= \text{true} \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_J(\varphi)$$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$ is a non-empty interval.

- ▶ CSL **path formulae** are formed according to the following grammar:

$$\varphi ::= \bigcirc^I \Phi \mid \Phi_1 U^I \Phi_2$$

where Φ , Φ_1 , and Φ_2 are state formulae and $I \subseteq \mathbb{R}_{\geq 0}$ an interval.

Abbreviate $\mathbb{P}_{[0,0.5]}(\varphi)$ by $\mathbb{P}_{\leq 0.5}(\varphi)$ and $\mathbb{P}_{[0,1]}(\varphi)$ by $\mathbb{P}_{>0}(\varphi)$.

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Derived operators

$$\Diamond \Phi = \text{true} \cup \Phi$$

$$\Diamond' \Phi = \text{true} \cup' \Phi$$

$$\mathbb{P}_{\leq p}(\Box \Phi) = \mathbb{P}_{>1-p}(\Diamond \neg \Phi)$$

$$\mathbb{P}_{(p,q)}(\Box' \Phi) = \mathbb{P}_{[1-q, 1-p]}(\Diamond' \neg \Phi)$$

Example properties

- Transient probabilities to be in *goal* state at time point 4:

$$\mathbb{P}_{\geq 0.92}(\Diamond^{=4} \text{goal})$$

- With probability ≥ 0.92 , a goal state is reached legally:

$$\mathbb{P}_{\geq 0.92}(\neg \text{illegal} \cup \text{goal})$$

- ... in **maximally 137** time units: $\mathbb{P}_{\geq 0.92}(\neg \text{illegal} \cup^{\leq 137} \text{goal})$
- ... once there, remain there almost surely for the next 31 time units:

$$\mathbb{P}_{\geq 0.92}(\neg \text{illegal} \cup^{\leq 137} \mathbb{P}_{=1}(\Box^{[0,31]} \text{goal}))$$

Paths in a CTMC

Timed paths

Paths in CTMC \mathcal{C} are maximal (i.e., infinite) paths of alternating states and time instants:

$$\pi = s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \dots$$

such that $s_i \in S$ and $t_i \in \mathbb{R}_{>0}$. Let $\text{Paths}(\mathcal{C})$ be the set of paths in \mathcal{C} and $\text{Paths}^*(\mathcal{C})$ the set of finite prefixes thereof.

Notations

- Let $\pi[i] := s_i$ denote the $(i+1)$ -st state along the timed path π .
- Let $\pi\langle i \rangle := t_i$ the time spent in state s_i .
- Let $\pi @ t$ be the state occupied in π at time $t \in \mathbb{R}_{\geq 0}$, i.e. $\pi @ t := \pi[i]$ where i is the smallest index such that $\sum_{j=0}^i \pi\langle j \rangle > t$.

CSL semantics (1)

Notation

$\mathcal{C}, s \models \Phi$ if and only if state-formula Φ holds in state s of CTMC \mathcal{C} .

Satisfaction relation for state formulas

The satisfaction relation \models is defined for CSL state formulas by:

$$\begin{aligned} s \models a &\quad \text{iff } a \in L(s) \\ s \models \neg \Phi &\quad \text{iff } \text{not } (s \models \Phi) \\ s \models \Phi \wedge \Psi &\quad \text{iff } (s \models \Phi) \text{ and } (s \models \Psi) \\ s \models \mathbb{P}_J(\varphi) &\quad \text{iff } \text{Pr}(s \models \varphi) \in J \end{aligned}$$

where $\text{Pr}(s \models \varphi) = \text{Pr}_s\{\pi \in \text{Paths}(s) \mid \pi \models \varphi\}$.

This is as for PCTL, except that Pr is the probability measures on cylinder sets of **timed** paths in CTMC \mathcal{C} .

CSL semantics (2)

Satisfaction relation for path formulas

Let $\pi = s_0 t_0 s_1 t_1 s_2 \dots$ be an infinite path in CTMC \mathcal{C} .

The satisfaction relation \models is defined for state formulas by:

$$\pi \models \bigcirc \textcolor{green}{I} \phi \quad \text{iff} \quad s_1 \models \phi \wedge t_0 \in \textcolor{green}{I}$$

$$\pi \models \textcolor{red}{\phi} \textcolor{blue}{U} \textcolor{green}{I} \psi \quad \text{iff} \quad \exists t \in \textcolor{green}{I}. ((\forall t' \in [0, t). \sigma @ t' \models \textcolor{red}{\phi}) \wedge \sigma @ t \models \textcolor{blue}{\psi})$$

Standard next- and until-operators

- ▶ $X\phi \equiv \bigcirc \textcolor{green}{I} \phi$ with $\textcolor{green}{I} = \mathbb{R}_{\geq 0}$.
- ▶ $\phi \textcolor{red}{U} \psi \equiv \phi \textcolor{blue}{U} \textcolor{green}{I} \psi$ with $\textcolor{green}{I} = \mathbb{R}_{\geq 0}$.

Measurability

CSL measurability

For any CSL path formula φ and state s of CTMC \mathcal{C} , the set $\{\pi \in \text{Paths}(s) \mid \pi \models \varphi\}$ is measurable.

Proof:

Rather straightforward; left as an exercise.

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

CSL model checking

CSL model checking problem

Input: a finite CTMC $\mathcal{C} = (S, \mathbf{P}, r, \iota_{\text{init}}, AP, L)$, state $s \in S$, and CSL state formula ϕ

Output: yes, if $s \models \phi$; no, otherwise.

Basic algorithm

In order to check whether $s \models \phi$ do:

1. Compute the **satisfaction set** $\text{Sat}(\phi) = \{s \in S \mid s \models \phi\}$.
2. This is done **recursively** by a bottom-up traversal of ϕ 's parse tree.
 - ▶ The nodes of the parse tree represent the subformulae of ϕ .
 - ▶ For each node, i.e., for each subformula ψ of ϕ , determine $\text{Sat}(\psi)$.
 - ▶ Determine $\text{Sat}(\phi)$ as function of the satisfaction sets of its children:
 - e.g., $\text{Sat}(\psi_1 \wedge \psi_2) = \text{Sat}(\psi_1) \cap \text{Sat}(\psi_2)$ and $\text{Sat}(\neg\psi) = S \setminus \text{Sat}(\psi)$.
3. Check whether state s belongs to $\text{Sat}(\phi)$.

Core model checking algorithm

Propositional formulas

$Sat(\cdot)$ is defined by structural induction as follows:

$$\begin{aligned} Sat(\text{true}) &= S \\ Sat(a) &= \{s \in S \mid a \in L(s)\}, \text{ for any } a \in AP \\ Sat(\Phi \wedge \Psi) &= Sat(\Phi) \cap Sat(\Psi) \\ Sat(\neg\Phi) &= S \setminus Sat(\Phi). \end{aligned}$$

Probabilistic operator \mathbb{P}

In order to determine whether $s \in Sat(\mathbb{P}_J(\varphi))$, the probability $Pr(s \models \varphi)$ for the event specified by φ needs to be established. Then

$$Sat(\mathbb{P}_J(\varphi)) = \{s \in S \mid Pr(s \models \varphi) \in J\}.$$

Let us consider the computation of $Pr(s \models \varphi)$ for all possible φ .

Time-bounded until (1)

Recall that: $s \models \mathbb{P}_J(\Phi \mathbf{U}^{\leq t} \Psi)$ if and only if $Pr(s \models \Phi \mathbf{U}^{\leq t} \Psi) \in J$.

Lemma

Let $S_{=1} = Sat(\Psi)$, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:

$$Pr(s \models \Phi \mathbf{U}^{\leq t} \Psi) = \begin{cases} 1 & \text{if } s \in S_{=1} \\ 0 & \text{if } s \in S_{=0} \\ \int_0^t \sum_{s' \in S} \mathbf{R}(s, s') \cdot e^{-r(s) \cdot x} \cdot Pr(s' \models \Phi \mathbf{U}^{\leq t-x} \Psi) dx & \text{otherwise} \end{cases}$$

This is a slight generalisation of the Volterra integral equation system for timed reachability.

The next-step operator

Recall that: $s \models \mathbb{P}_J(\bigcirc \Phi)$ if and only if $Pr(s \models \bigcirc \Phi) \in J$.

Lemma

$$Pr(s \models \bigcirc \Phi) = \underbrace{\left(e^{-r(s) \cdot \inf \Phi} - e^{-r(s) \cdot \sup \Phi} \right)}_{\text{probability to leave } s \text{ in interval } \Phi} \cdot \sum_{s' \in Sat(\Phi)} \mathbf{P}(s, s').$$

Algorithm

Considering the above equation for all states simultaneously yields:

$$(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{b}^T \cdot \mathbf{P}$$

with \mathbf{b} is defined by $b_\Phi(s) = e^{-r(s) \cdot \inf \Phi} - e^{-r(s) \cdot \sup \Phi}$ if $s \in Sat(\Phi)$ and 0 otherwise, and \mathbf{b}^T is the transposed variant of \mathbf{b} .

Time-bounded until (2)

Let $S_{=1} = Sat(\Psi)$, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:

$$Pr(s \models \Phi \mathbf{U}^{\leq t} \Psi) = \begin{cases} 1 & \text{if } s \in S_{=1} \\ 0 & \text{if } s \in S_{=0} \\ \int_0^t \sum_{s' \in S} \mathbf{R}(s, s') \cdot e^{-r(s) \cdot x} \cdot Pr(s' \models \Phi \mathbf{U}^{\leq t-x} \Psi) dx & \text{otherwise} \end{cases}$$

Recall lemma from the previous lecture

$$\underbrace{Pr(s \models \bar{F} \mathbf{U}^{\leq t} G)}_{\text{timed reachability in } \mathcal{C}} = \underbrace{Pr(s \models \Diamond^{\leq t} G)}_{\text{in } \mathcal{C}[F \cup G]} = \underbrace{\underline{p}(t) \text{ with } \underline{p}(0) = \mathbf{1}_s}_{\text{transient prob. in } \mathcal{C}[F \cup G]}.$$

Phrased using CSL state formulas

$$\underbrace{Pr(s \models \Phi \mathbf{U}^{\leq t} \Psi)}_{\text{timed reachability in } \mathcal{C}} = \underbrace{Pr(s \models \Diamond^{\leq t} \Psi)}_{\text{in } \mathcal{C}[Sat(\neg\Phi) \cup Sat(\Psi)]} = \underbrace{\underline{p}(t) \text{ with } \underline{p}(0) = \mathbf{1}_s}_{\mathcal{C}[Sat(\neg\Phi) \cup Sat(\Psi)]}.$$

Time-bounded until (3)

Algorithm for checking $Pr(s \models \phi U^{\leq t} \psi) \in J$

1. If $t = \infty$, then use approach for until (as in PCTL): solve a system of linear equations.
2. Determine recursively $Sat(\phi)$ and $Sat(\psi)$.
3. Make all states in $S \setminus Sat(\phi)$ and $Sat(\psi)$ absorbing.
4. Uniformize the resulting CTMC with respect to its maximal rate.
5. Determine the transient probability at time t using s as initial distribution.
6. Return yes if transient probability of all ψ -states lies in J , and no otherwise.

Preservation of CSL-formulas

Bisimulation and CSL-equivalence coincide

Let \mathcal{C} be a finitely branching CTMC and s, t states in \mathcal{C} . Then:

$s \sim_m t$ if and only if s and t are CSL-equivalent.

Remarks

If for CSL-formula ϕ we have $s \models \phi$ but $t \not\models \phi$, then it follows $s \not\sim_m t$. A single CSL-formula suffices!

Time-bounded until (4)

Possible optimizations

1. Make all states in $S \setminus Sat(\exists(\phi U \psi))$ absorbing.
2. Make all states in $Sat(\forall(\phi U \psi))$ absorbing.
3. Replace the labels of all states in $S \setminus Sat(\exists(\phi \psi))$ by unique label zero.
4. Replace the labels of all states in $Sat(\forall(\phi U \psi))$ by unique label one.
5. Perform bisimulation minimization on all states.

The last step collapses all states in $S \setminus Sat(\exists(\phi U \psi))$ into a single state, and does the same with all states in $Sat(\forall(\phi U \psi))$.

Preservation of CSL-formulas

Weak bisimulation and CSL-without-next-equivalence coincide

Let \mathcal{C} be a finitely branching CTMC and s, t states in \mathcal{C} . Then:

$s \approx_m t$ if and only if s and t are CSL-without-next-equivalent.

Here, CSL-without-next is the fragment of CSL where the next-operator \bigcirc does not occur.

Remarks

If for CSL-without-next-formula ϕ we have $s \models \phi$ but $t \not\models \phi$, then it follows $s \not\approx_m t$.

Uniformization and CSL

Uniformization and CSL

For any finite CTMC \mathcal{C} with state space S , $r \geq \max\{r(s) \mid s \in S\}$ and Φ a CSL-without-next-formula:

$$Sat^{\mathcal{C}}(\Phi) = Sat^{\mathcal{C}'}(\Phi) \text{ where } \mathcal{C}' = \text{unif}(r, \mathcal{C}).$$

Uniformization and CSL

For any uniformized CTMC: CSL-equivalence coincides with CSL-without-next-equivalence.

Time complexity

Let $|\Phi|$ be the size of Φ , i.e., the number of logical and temporal operators in Φ .

Time complexity of CSL model checking

For finite CTMC \mathcal{C} and CSL state-formula Φ , the CSL model-checking problem can be solved in time

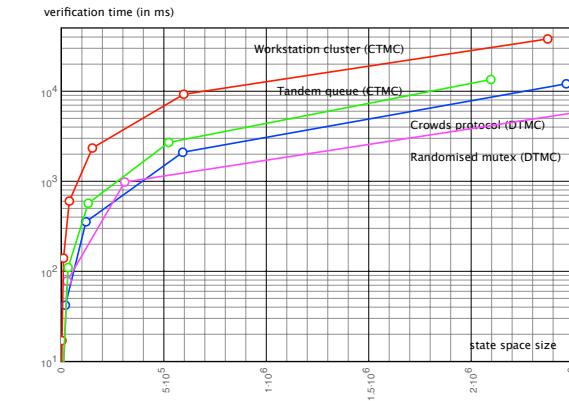
$$\mathcal{O}(\text{poly}(\text{size}(\mathcal{C})) \cdot t_{\max} \cdot |\Phi|)$$

where $t_{\max} = \max\{t \mid \Psi_1 U^{\leq t} \Psi_2 \text{ occurs in } \Phi\}$ with and $t_{\max} = 1$ if Φ does not contain a time-bounded until-operator.

Overview

- 1 CSL Syntax
- 2 CSL Semantics
- 3 CSL Model Checking
- 4 Complexity
- 5 Summary

Some practical verification times



- ▶ command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.
- ▶ CSL formulas are time-bounded until-formulas.

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Summary

- ▶ CSL is a variant of PCTL with timed next and timed until.
- ▶ Sets of paths fulfilling CSL path-formula φ are measurable.
- ▶ CSL model checking is performed by a recursive descent over Φ .
- ▶ The timed next operator amounts to a single vector-matrix multiplication.
- ▶ The time-bounded until-operator $U^{\leq t}$ is solved by uniformization.
- ▶ The worst-case time complexity is polynomial in the size of the CTMC and linear in the size of the formula.