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Interactive Markov Chains What are Interactive Markov Chains?

Model-based performance evaluation

I Analyse performance metrics based on an abstract system model
I formalisms: stochastic Petri nets, queueing networks, SANs, . . .

I The prevailing paradigm is continuous-time randomness
I exponential distributions, i.e., continuous-time Markov processes

I Complexity of systems requires compositional approach
I reflecting system architecture

I Enormous model sizes require compositional abstraction mechanisms
I like bisimulation minimization

I Nondeterminism is at heart of compositionality

We need: Compositional Continuous-Time Markov Chains
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Interactive Markov Chains What are Interactive Markov Chains?

Interactive Markov chains
Interactive Markov chain
An interactive Markov chain is a tuple I = (S,Act, −→, ⇒, s0) where

I S is a nonempty set of states with initial state s0 ∈ S
I Act is a finite set of actions; τ ∈ Act is internal action
I −→ ⊆ S × Act× S is a set of interactive transitions, and
I ⇒ ⊆ S × R>0 × S is a set of Markovian transitions.

Thus:
IMCs are labeled transition systems with action-labeled transitions, as well as
Markovian transitions that are labeled with rates of exponential distributions. Any
CTMC is an IMC; any LTS is an IMC.

1. IT(s) the set of interactive transitions that leave s.
2. MT(s) the set of Markovian transitions that leave s.
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Interactive Markov Chains What are Interactive Markov Chains?

Interactive Markov chains
Classification of states

I s is Markovian if MT(s) 6= ∅ and IT(s) = ∅
I s is interactive if MT(s) = ∅ and IT(s) 6= ∅
I s is hybrid if MT(s) 6= ∅ and IT(s) 6= ∅
I s is timelock if MT(s) = IT(s) = ∅

For Markovian state s, let:

I R(s, s ′) =
∑{

λ | s λ⇒ s ′
}

be the rate to move from s to s ′,

I r(s) =
∑

s′∈S R(s, s ′) be the exit rate of s
I P(s, s ′) = R(s,s′)

E(s) is the probability to move from s to s ′

Example
R(s0, s2) = 0.3, r(s0) = 0.3 + 0.6 = 0.9 and P(s0, s2) = 1

3 .
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Interactive Markov Chains What are Interactive Markov Chains?

Maximal progress assumption

Maximal progress

1. Internal (action) transitions are labeled with the action τ .
2. These transitions will not be subject to interaction.
3. They cannot be delayed by other components.
4. Thus, internal interactive transitions can trigger immediately.
5. But, the probability to execute Markovian transitions immediately is

zero.

Maximal progress assumption
Internal transitions take precedence over Markovian ones.
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Interactive Markov Chains What are Interactive Markov Chains?

Maximal progress
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Interactive Markov Chains Operations on IMCs

Parallel composition
Let I1 = (S1,Act1, −→1, ⇒1, s0,1) and I2 = (S2,Act2, −→2, ⇒2, s0,2) be
IMCs. The parallel composition of I1 and I2 wrt. A ⊆ Act \ { τ } is:

I1 ||A I2 = (S1 × S2,Act1 ∪ Act2, −→ , ⇒ , (s0,1, s0,2))
where −→ and ⇒ are defined as the smallest relations satisfying:

(SYNC) s1 α−−→1 s ′1 and s2 α−−→2 s ′2 and α ∈ A
(s1, s2) α−−→ (s ′1, s ′2)

(ASYNC) s1 α−−→1 s ′1 and α 6∈ A
(s1, s2) α−−→ (s ′1, s2)

s2 α−−→2 s ′2 and α 6∈ A
(s1, s2) α−−→ (s1, s ′2)

(DELAY) s1
λ⇒1 s ′1

(s1, s2)
λ⇒ (s ′1, s2)

s2
λ⇒2 s ′2

(s1, s2)
λ⇒ (s1, s ′2)

Processes delay independently as in interleaving.
Due to the memoryless property, this is correct.
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Interactive Markov Chains Operations on IMCs

Parallel composition: example
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Interactive Markov Chains Operations on IMCs

Hiding

Hiding
The hiding of IMC I = (S,Act, −→ , ⇒ , s0) wrt. the set A ⊆ Act \ { τ }
of actions is the IMC I \ A = (S,Act \ A, −→′, ⇒ , s0) where −→′ is the
smallest relation defined by:
1. s α−−→ s ′ and α 6∈ A implies s α−−→′ s ′, and
2. s α−−→ s ′ and α ∈ A implies s τ−→′ s ′.

I Hiding transforms α-transitions with α ∈ A into τ -transitions.
I Turning an α-transition emanating from state s into a τ -transition

may change the semantics of the IMC, as now —due to maximal
progress— never a Markovian transition in s will be taken.
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Interactive Markov Chains Operations on IMCs

Hiding: example
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Interactive Markov Chains (Bi)simulation relations

Strong bisimulation

For C ⊆ S, α ∈ Act, let T(s,α,C) = 1 iff {s ′ ∈ C | s α−−→ s ′} 6= ∅.
Intuition: T(s,α,C) = 1 iff s can move to C via an α-transition.

Strong bisimulation
Let I = (S,Act, −→ , ⇒ , s0) be an IMC. Equivalence R ⊆ S × S is a
strong bisimulation on I if for any (s, t) ∈ R and C ∈ S/R:
1. for any α ∈ Act, T(s,α,C) = T(t,α,C), and
2. s τ−−→/ implies R(s,C) = R(t,C), where R(s,C) =

∑
s′∈C R(s, s ′).

Let ∼ be the largest strong bisimulation.

Congruence
∼ is a congruence wrt. parallel composition and hiding.
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Interactive Markov Chains (Bi)simulation relations

Strong bisimulation – Example
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Interactive Markov Chains (Bi)simulation relations

Weak bisimulation

I Main idea: IMCs are equivalent when they exhibit similar observable
system behaviour.

I Sequences of τ−→ -transitions can be collapsed as for branching
bisimulation.

I What about sequences of ⇒ -transitions? Can they be mimicked?
I Yes, but a sequence of exponential distributions is a phase-type

distribution, and not an exponential distribution.
I Thus, sequences of ⇒ -transitions cannot be mimicked exactly by

exponential distributions.
I ⇒ -transitions will therefore be treated as in strong bisimulation.
I As before, rate equality is only required for stable states.
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Interactive Markov Chains (Bi)simulation relations

Weak bisimulation
For C ⊆ S, let W(s,α,C) = 1 iff {s ′ ∈ C | s τ∗−−→ α6=τ−−−→ τ∗−−→ s ′} 6= ∅.
W(s,α,C) = 1 iff s can weakly move to C via an α-transition.

Weak bisimulation
Let I = (S,Act, −→ , ⇒ , s0) be an IMC. Equivalence R ⊆ S × S is a
weak bisimulation on I if for any (s, t) ∈ R and C ∈ S/R:
1. for any α ∈ Act, W(s,α,C) = W(t,α,C), and
2. s τ∗−−→ s ′ and s ′ τ−−→/ implies

t τ∗−−→ t ′ and t ′ τ−−→/ and R(s ′,C) = R(t ′,C), for some t ′ ∈ S.
Let ≈ be the largest weak bisimulation.

Congruence
≈ is a congruence wrt. parallel composition and hiding.
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Interactive Markov Chains (Bi)simulation relations

Weak bisimulation – Example
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Interactive Markov Chains (Bi)simulation relations

Constraint-oriented performance modeling

I Let α and β be two successive actions in LTS P.
I Let Dp be of the form α; D;β where D is a phase-type distribution.
I A phase-type distribution is given by the (random) time until

absorption in an absorbing CTMC. D is thus an IMC.
I Adding a random time constraint on top of P yields: P ||{α,β}Dp.
I Applying this to two processes yields: (P ||A Q) ||Ap∪Aq (Dp ||∅ Dq)

I If Dp (Dq) only delays local actions from P (Q), then this is weak
bisimilar to: (

P ||Ap Dp
)

︸ ︷︷ ︸
local constraints of P

||A
(
Q ||Aq Dq

)
︸ ︷︷ ︸

local constraints of Q

I Functional and performance aspects are separated constraints.
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Interactive Markov Chains (Bi)simulation relations

Closed IMC models

Closed IMC model
The typical specification that is subject to analysis is of the form:(

I1 ||A1 I2 ||A2 . . . ||AN−1 IN
)
\ A

where A is the union of all actions, i.e., A = ∪N−1
i=1 Acti \ { τ }.

It is closed, as no action is subject to further interaction.
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Interactive Markov Chains (Bi)simulation relations

Compositional minimisation

I The preservation results suggest to compute the quotient IMC prior
to their analysis.

I This leads to significant state-space reductions and efficiency gains in
computation times.

I Even better: bisimulation being a congruence wrt. ||, enables
compositional minimisation:

∀0 < j 6 N. Ij ∼ Îj implies

I1 ||A1 . . . ||AN−1 IN ∼ Î1 ||A1 . . . ||AN−1 ÎN .

I This technique has allowed the performance analysis of some systems
that could not be handled before.
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Interactive Markov Chains (Bi)simulation relations

An exemplary case
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Interactive Markov Chains (Bi)simulation relations

Reduction to a CTMC
Reduction strategy:

1. Apply maximal progress: remove all Markovian transitions in unstable
states.

2. Apply weak bisimulation minimisation. This requires computing
transitive closure.

3. In absence of nondeterminism, the resulting IMC is a CTMC.
4. Analyse the CTMC (transient/stationary) using standard numerical

techniques.
5. Or, apply model checking, e.g., branching time (CSL), or linear time

(DTA).

Nondeterminism
What if nondeterminism is still present? Can we still analyse IMCs? How?
Which measures? At which cost? This is a current topic of research.
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Interactive Markov Chains Summary

Summary

Main points

I IMCs are combine LTS and CTMCs in an orthogonal manner.
I Maximal progress = immediate transitions take precedence over

Markovian ones.
I IMCs are closed under parallel composition and hiding.
I Strong bisimulation requires rate equality for stable states only.
I Weak bisimulation allows for collapsing sequences of internal

transitions.
I Strong and weak bisimulation are substitutive wrt. parallel

composition and hiding.
I Weak bisimulation may allow for removing nondeterminism yielding

CTMCs.
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Interactive Markov Chains Summary

Practical usage

Take-home message
IMCs are used as semantical model for practical modeling languages such
as: dynamic fault trees, AADL, generalized stochastic Petri nets, and so
forth.
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