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Overview Model-based performance evaluation

» Analyse performance metrics based on an abstract system model
) ] » formalisms: stochastic Petri nets, queueing networks, SANs, ...
@ What are Interactive Markov Chains? » The prevailing paradigm is continuous-time randomness
» exponential distributions, i.e., continuous-time Markov processes
» Complexity of systems requires compositional approach
» reflecting system architecture
» Enormous model sizes require compositional abstraction mechanisms
> like bisimulation minimization

» Nondeterminism is at heart of compositionality

We need: Compositional Continuous-Time Markov Chains
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interactive Markou Chains What are Interacive Mrkov Chains?
Interactive Markov chains Interactive Markov chains

Interactive Markov chain Classification of states

An interactive Markov chain is a tuple Z = (S, Act, —, =, s0) where > s is Markovian if MT(s) £ @ and IT(s) = &

> s is interactive if MT(s) = & and IT(s) # @
» s is hybrid if MT(s) # @ and IT(s) # @
> s is timelock if MT(s) = IT(s) = &

» S is a nonempty set of states with initial state s € S
> Act is a finite set of actions; 7 € Act is internal action

» — C S X Actx S is a set of interactive transitions, and

» — C S xRy x Sis a set of Markovian transitions.

For Markovian state s, let:

Thus: N
. ] ] - > R(s,s’):Z{)\|s:>s’} be the rate to move from s to s/,
IMCs are labeled transition systems with action-labeled transitions, as well as
Markovian transitions that are labeled with rates of exponential distributions. Any > r(s) = > .csR(s, s') be the exit rate of s
CTMCis an IMC; any LTS is an IMC. > P(s,s') = —2R,(_:S(SS)/ is the probability to move from s to s’

|
1. IT(s) the set of interactive transitions that leave s.
2. MT(s) the set of Markovian transitions that leave s.

Example

R(so,52) = 0.3, r(s0) = 0.3+ 0.6 = 0.9 and P(sp, 52) = 3.
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Maximal progress assumption Maximal progress

Maximal progress @ .
Internal (action) transitions are labeled with the action 7. ; A !
These transitions will not be subject to interaction. 7! @ reduces to T @

They cannot be delayed by other components. @ @

Thus, internal interactive transitions can trigger immediately.

@l > W =

But, the probability to execute Markovian transitions immediately is
zero.

Maximal progress assumption A 2
g (1)

|
. 1
o _ remains @ (1)
Internal transitions take precedence over Markovian ones. ;

® ®

But as visible actions may be subject to delaying by other components:
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Interactive Markov Chains Operations on IMCs Interactive Markov Chains Operations on IMCs

Overview Parallel composition
Let 77 = (51, Acty, —1, =1, 50'1) and I, = (52, Acty, —p, =0, 50’2) be
IMCs. The parallel composition of 7; and Zo wrt. A C Act\ {7} is:

Ti||aZa = (51 x S2, Acty U Acty, —, =, (50,1, %0,2))
where — and = are defined as the smallest relations satisfying:

s1-%515 and s %, sh and a € A

© Operations on IMCs (SYNC) (s1,%) 2 (51, 55)
(ASYNC) s1-%1s,and a g A s5%rshand a g A
(51, %2) % (51, %2) (s1,%2) =% (51, 52)
A , A /
(DELAY) 5]_ :>]_ Sl 52 :>2 52
A A
(51, 52) == (51, %2) (s1,52)== (51, %)

Processes delay independently as in interleaving.
Due to the memoryless property, this is correct.
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Parallel composition: example Hiding

The hiding of IMC Z = (S, Act, —, =, sp) wrt. the set A C Act\ {7}
of actions is the IMC Z\ A= (S, Act\ A, —/, =, 5p) where —' is the
smallest relation defined by:

1. s 5 and a € A implies s %' s/, and

2. s—% 5 and a € Aimplies s —' ¢'.

|
» Hiding transforms a-transitions with o € A into 7-transitions.

» Turning an a-transition emanating from state s into a 7-transition
may change the semantics of the IMC, as now —due to maximal
progress— never a Markovian transition in s will be taken.
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Hiding: example Overview

© (Bi)simulation relations
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Strong bisimulation Strong bisimulation — Example
For CC S, a€Act let T(s,a,C)=1iff { € C|s5} #2. 2 A

Intuition: T(s, , C) = 1 iff s can move to C via an a-transition.

A
Strong bisimulation @
Let Z = (S, Act, —, =, sp) be an IMC. Equivalence RC S x Sis a 72 12
strong bisimulation on Z if for any (s,t) € R and C € S/R: ® !

1. for any a € Act, T(s,a, C) = T(t, o, C), and
2. s—/ implies R(s, C) = R(t, C), where R(s, C) = >, cc R(s, 8). A A

Let ~ be the largest strong bisimulation. /‘\@
7

2p

~ is a congruence wrt. parallel composition and hiding.
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Interactive Markov Chains (Bi)simulation relations Interactive Markov Chains (Bi)simulation relations

Weak bisimulation Weak bisimulation
For CC S, let W(s,a, C)=1iff {s' € C|sT> 2ZT, T, ¢\ L .
» Main idea: IMCs are equivalent when they exhibit similar observable W(s, a, C) = 1 iff s can weakly move to C via an a-transition.

system behaviour.

» Sequences of —T--transitions can be collapsed as for branching Weak bisimulation

bisimulation. Let Z = (S, Act, —, =, sp) be an IMC. Equivalence RC S x Sis a
weak bisimulation on Z if for any (s,t) € Rand C € S/R:

1. for any a € Act, W(s, o, C) = W(t, o, C), and

» What about sequences of = -transitions? Can they be mimicked?

» Yes, but a sequence of exponential distributions is a phase-type

distribution, and not an exponential distribution. 2. s T and s —4 implies
» Thus, sequences of = -transitions cannot be mimicked exactly by t-T—t and t' —/ and R(s, C) = R(t/, C), for some t’ € S.
exponential distributions. Let ~ be the largest weak bisimulation.

» —>-transitions will therefore be treated as in strong bisimulation.

~ is a congruence wrt. parallel composition and hiding.
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Interactive Markov Chains (Bi)simulation relations Interactive Markov Chains (Bi)simulation relations
Weak bisimulation — Example Constraint-oriented performance modeling

» Let o and 3 be two successive actions in LTS P.
> Let D, be of the form «; D; 3 where D is a phase-type distribution.

> A phase-type distribution is given by the (random) time until
absorption in an absorbing CTMC. D is thus an IMC.

» Adding a random time constraint on top of P yields: P H{u,ﬁ} Dp.
> Applying this to two processes yields: (P ||a Q) [|a,ua, (Dp ||z Dqg)

» If D, (Dg) only delays local actions from P (Q), then this is weak
bisimilar to:

(Plla, D) lla (Qlla, Do)

—_——— [ —
local constraints of P local constraints of @

» Functional and performance aspects are separated constraints.
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Interactive Markov Chains (Bi)simulation relations Interactive Markov Chains (Bi)simulation relations

Closed IMC models Compositional minimisation

» The preservation results suggest to compute the quotient IMC prior
to their analysis.

Closed IMC model » This leads to significant state-space reductions and efficiency gains in

The typical specification that is subject to analysis is of the form: computation times.
» Even better: bisimulation being a congruence wrt. ||, enables
(Il |4y Z2 1|4, - - - llan_, IN) \A compositional minimisation:
where A is the union of all actions, i.e., A= U,N:_llAct,- \ {7} VO<j<N. I; ~7; implies
It is closed, as no action is subject to further interaction. Tilla, - llay_1 In ~ T Ay - Ay, In.

» This technique has allowed the performance analysis of some systems
that could not be handled before.
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Interactive Markov Chains (Bi)simulation relations Interactive Markov Chains (Bi)simulation relations

An exemplary case Reduction to a CTMC
Reduction strategy:

MoNoLITHIC CONSTRUCTIONFOR ETCS WITH 2 TRAINS

; Monolithic Constmiction 1. Apply maximal progress: remove all Markovian transitions in unstable
Phases — — - - — ——
States Transimons | G Tune (sec.) | M Tune (sec.) states
1 33600 518464 12 3 '
5| 302400 | 4142016 22 402 2. Apply weak bisimulation minimisation. This requires computing
10 |[1016400 | 13521376 46 5154 "
transitive closure.

EXPLICIT STEPS: COMPOSITION AND MINIMIZATION STATISTICS 3. In absence of nondeterminism, the resulting IMC is a CTMC.

Trains | Phases Compositional Construction Final Quotient IMC 4. Analyse the CTMC (transient/stationary) using standard numerical

h— ‘ States Transitions | G + M Tune (sec.) States Transitions e
2 I 600 2505 2 355 1590 ques.

S | 10000 53625 61 | 5873 39500 - P - -

0 3750 Sostas 1 | 20000 i 5. Or, apply model checking, e.g., branching time (CSL), or linear time
3 T 3240 T6061 N I kYA 5333 (DTA).

5| 64440 354100 813 | 36070 159119

10 | 249480 | 1382900 10666 | 113630 533500

s | 57950 | 260350 420 | 30575 141000 Nondeterminism

LR LU, il BB = What if nondeterminism is still present? Can we still analyse IMCs? How?

Which measures? At which cost? This is a current topic of research.
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Interactive Markov Chains Summary Interactive Markov Chains Summary

Overview Summary

» IMCs are combine LTS and CTMC s in an orthogonal manner.

» Maximal progress = immediate transitions take precedence over
Markovian ones.

» IMCs are closed under parallel composition and hiding.
» Strong bisimulation requires rate equality for stable states only.

» Weak bisimulation allows for collapsing sequences of internal

transitions.
» Strong and weak bisimulation are substitutive wrt. parallel
Q@ Summary o .
composition and hiding.
» Weak bisimulation may allow for removing nondeterminism yielding
CTMGs.
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Practical usage

Take-home message

IMCs are used as semantical model for practical modeling languages such
as: dynamic fault trees, AADL, generalized stochastic Petri nets, and so
forth.
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