

Modeling and Verification of Probabilistic Systems

Summer term 2011

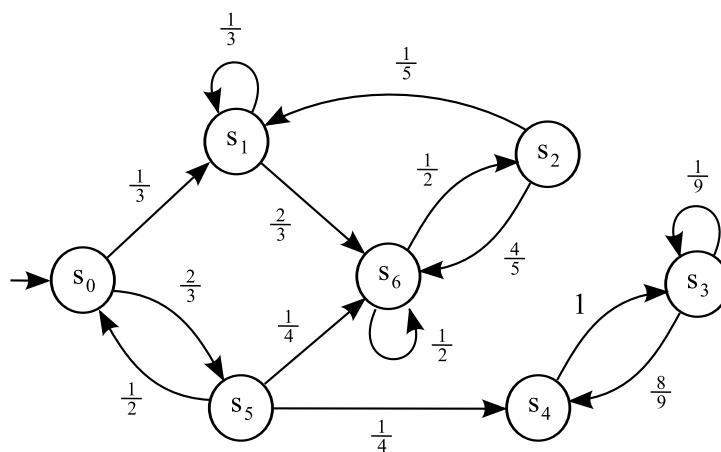
– Series 2 –

Hand in on April 27th before the exercise class.

Exercise 1

(3 points)

Consider the DTMC below:



Let $A = \{s_3\}$ and $B = \{s_2\}$. (Hint: for a), b), d) and e) you do not have to solve linear equation systems or compute powers of matrices.)

- Compute the probability measure of the union of the following cylinder sets:
 $\text{Cyl}(s_0s_1)$, $\text{Cyl}(s_0s_5s_6)$, $\text{Cyl}(s_0s_5s_4s_3)$, $\text{Cyl}(s_0s_1s_6)$
- Compute the probability, from each state of the Markov chain, of reaching a state in A within 4 steps.
- Compute the probability, from each state of the Markov chain, of reaching a state in A .
- What is the probability, from the initial state, of reaching the set of states $A \cup B$?
- What is the probability, from the initial state, that a state from $A \cup B$ is visited infinitely often?

Exercise 2

(3 points)

Consider a finite DTMC $D = (S, \mathbf{P}, s_{\text{init}}, AP, L)$ and subsets of states $A, B \subseteq S$. Show that the following two sets of paths are measurable, i.e. contained in the σ -algebra of D :

- the set of paths starting in state s_{init} and remaining forever in states from A ;
- the set of paths starting in state s_{init} , remaining forever in states from A and passing through a state in B after exactly 5 time-steps.

Exercise 3**(4 points)**

Consider the Markov Chain from Exercise 1 again. We now define new subsets of states as following:

- $C = \{s_0, s_1, s_4, s_6\}$
- $D = \{s_3, s_4\}$
- $E = \{s_2, s_3\}$

a) Compute $Pr(s_0 \models \diamond E)$ by solving a linear equation system.

b) Compute $Pr(s_0 \models C \cup^{\leq 5} E)$ using:

- linear equation systems;
- transient state probabilities.

c) Determine $Pr(s_0 \models \diamond \square D)$.