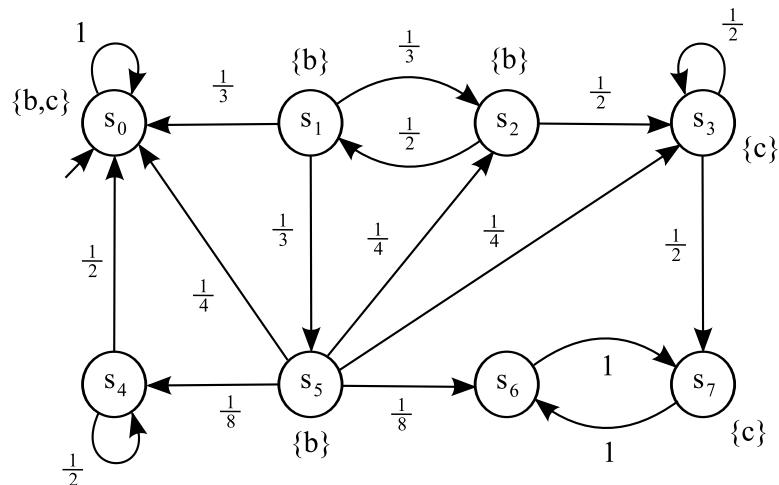


Modeling and Verification of Probabilistic Systems

Summer term 2011

– Series 4 –


Hand in on May 11th before the exercise class.

Exercise 1

(4 points)

Consider the DTMC below. Illustrate the execution of the PCTL model checking algorithms to determine which states of the Markov chain satisfy:

- a) $P_{\geq \frac{17}{19}}[b \cup c]$
- b) $P_{\geq \frac{1}{2}}[\bigcirc P_{>\frac{1}{3}}[(b \vee c) \cup^{\leq 2} (b \wedge c)]]$

Exercise 2

(3 points)

Below are definitions for two temporal (path) operators, W and $U^{[l,u]}$, which could be added to the temporal logic PCTL. Provide algorithms to perform model checking for each of these operators on any finite DTMC.

- a) $\omega \models \varphi_1 W \varphi_2 \Leftrightarrow \exists k \geq 0 \text{ such that } \omega(k) \models \varphi_2 \text{ and } \omega(i) \models \varphi_1 \text{ for all } 0 \leq i \leq k$
 or $\omega(i) \models \varphi_1 \text{ for all } i \geq 0$
- b) $\omega \models \varphi_1 U^{[l,u]} \varphi_2 \Leftrightarrow \exists l \leq i \leq u \text{ such that } \omega(i) \models \varphi_2 \text{ and } \forall j < i, \omega(j) \models \varphi_1$

(where ω is an infinite path, φ_1 and φ_2 are PCTL state formulae and l, u are non-negative integers such that $l \leq u$).

Exercise 3

(3 points)

Prove or disprove the following PCTL equivalences:

- (a) $P_{=1}(\bigcirc P_{=1}(\Box a)) \equiv P_{=1}(\Box P_{=1}(\bigcirc a))$
- (b) $P_{>0.5}(\bigcirc P_{>0.5}(\Diamond a)) \equiv P_{>0.5}(\Diamond P_{>0.5}(\bigcirc a))$
- (c) $P_{=1}(\bigcirc P_{=1}(\Diamond a)) \equiv P_{=1}(\Diamond P_{=1}(\bigcirc a))$